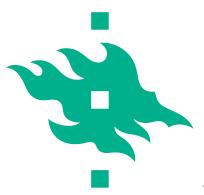



## Single step evaluations using haplotype segments

M. L. Makgahlela, T. Knürr, G. P. Aamand, I. Strandén

& E. A. Mäntysaari






#### Introduction

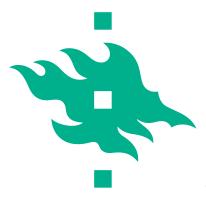


- Genomic evaluations, as originally proposed, were based on regression on haplotype segments, which are;
  - closely located allele combinations that tend to be jointly inherited
- Many current evaluations however, are based on regression on a large number of individual markers in models that are;
  - simplified and less computationally demanding



#### Introduction




- If the observed reliabilities are low, haplo-block models may be an alternative to improve evaluations
  - They were found to be more reliable than individual markers
    - Because ancestral haplotype segments capture greater linkage disequilibrium (LD) with the QTL than single markers
  - 2) They could greatly reduce the number of markers for genomic evaluations
- Many free and reliable haplotyping software are available



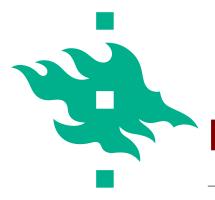


# To examine the use of genomic relationship matrix (G) constructed using haplotype segments in single step evaluations

- applied on the Nordic Red dairy cattle (RDC)
- Compare the haplo-block model with standard singlestep GBLUP



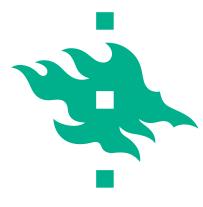



## Data were provided by NAV

#### Genotypes

 After editing, there were 38,194 informative SNPs available for 4,727 bulls; born between 1971-2008

#### Phenotypes


- Deregressed Proofs (DRP) of cows for milk and protein
  - Full data (DRP<sub>F</sub>)  $\rightarrow$  3,633,481 cows
  - Reduced data (DRP<sub>R</sub>) i.e., discard cows born after
    > 2005 → 3,146,448 cows
- Full RDC pedigree (n=4,873,703)







- ApaX program in MiX99 was used for calculating EDCs
- 2 runs of animal model were used to solve deregressed bull EBVs as follows;
  - full run → with DRP<sub>F</sub> → generate DRP for 519 validation bulls born between 2002-2008 with EDC>=20
  - reduced run → with DRP<sub>R</sub> → daughters of 4,208 training bulls born between 1971-2005



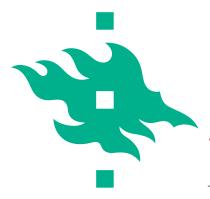
## Construction of haplotype blocks

#### Details in Knurr et al. EAAP 2013

- BayesB joint estimation of SNP effects in a multilocus model
- 2) Rank SNPs by the absolute effect size  $\hat{\beta}_g$
- 3) Haplotype (phase) genotyped using Beagle *v*3.3
- 4) Construct **5-SNP** haplotypes (i.e., 2 SNPs before and after the one with the highest absolute  $\hat{\beta}_g$ )
- 5) Estimate haplotype variances
- 6) Tested 750 and 1500 haplotype segments






## Single step model

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}w^{-1} - \mathbf{A}^{-1}_{22} \end{bmatrix}$$
, where

 A<sup>-1</sup> includes all animals and A<sub>22</sub><sup>-1</sup> is a sub-matrix for genotyped bulls

• 
$$Gw = (1-w)Gk + wA_{22}$$

$$\checkmark k = \frac{trace(\mathbf{A}_{22_{ii}})}{trace(\mathbf{G}_{ii})}$$
; w was varied at 0.10, 0.20 or 0.40





#### Single step model

#### Haplo-block G

$$G = ZDZ'$$
;  $Z_{i,j} \leftarrow 0,1,2$ 

- 0,1 or 2 is the number of copies of j<sup>th</sup> haplo-block
- D is a diagonal of haplo-block variances
- Haplo-block **G** was constructed with
  750 segments (HAP750) and 1500 (HAP1500)

#### Individual SNP-based G

$$\mathbf{G} = \mathbf{Z}\mathbf{Z}'/2\sum pq$$
;  $\mathbf{Z}_{i,j} \leftarrow (0-2p_j)$ ;  $(1-2p_j)$ ;  $(2-2p_j)$ ,

p<sub>i</sub> is the frequency for the 2<sup>nd</sup> allele





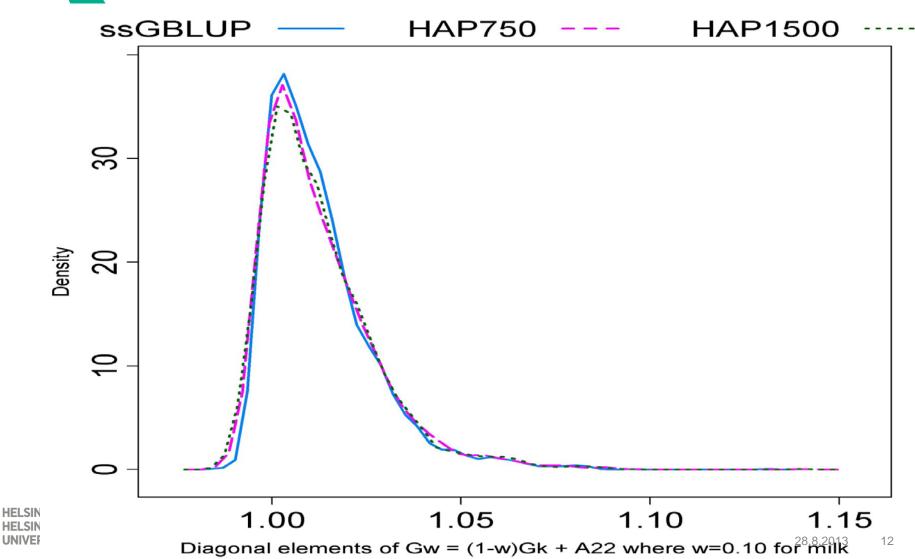


$$DRP_{R_{cow}} = \mathbf{1}_n \, \mu + Wa + e,$$

- > where:
  - var(a) = Hσ<sup>2</sup><sub>a</sub> with variances from NAV routine evaluations
  - DRP<sub>Rcow</sub> are the deregressed proofs of all cows in reduced data (incl. Daughs of bulls in the reduced data)
  - Effective record number of the cow was used as weight

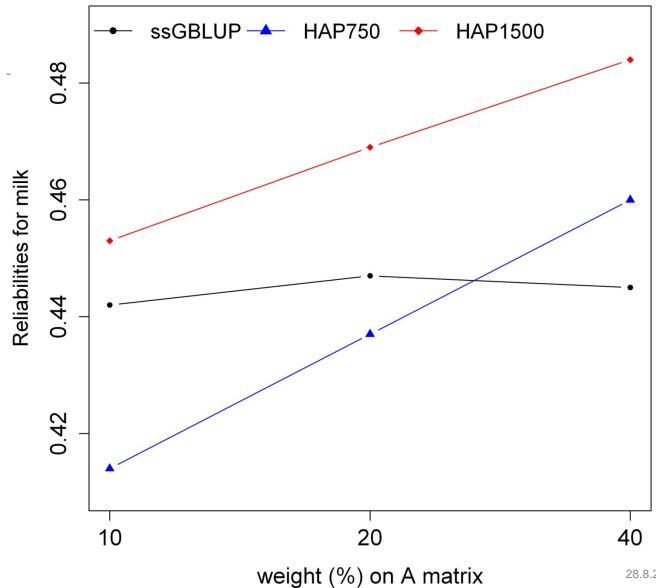






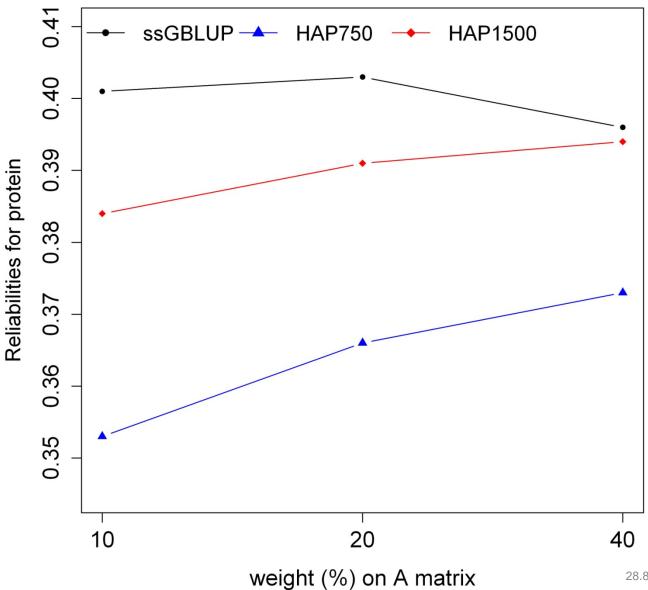

$$DRP_{F_{bull}} = b_0 + b_1 GEBV + e,$$

- where:
  - DRP<sub>Fbull</sub> is the deregressed proof of the candidate bull from the animal model with full data
  - EDC of the bull was used as weight



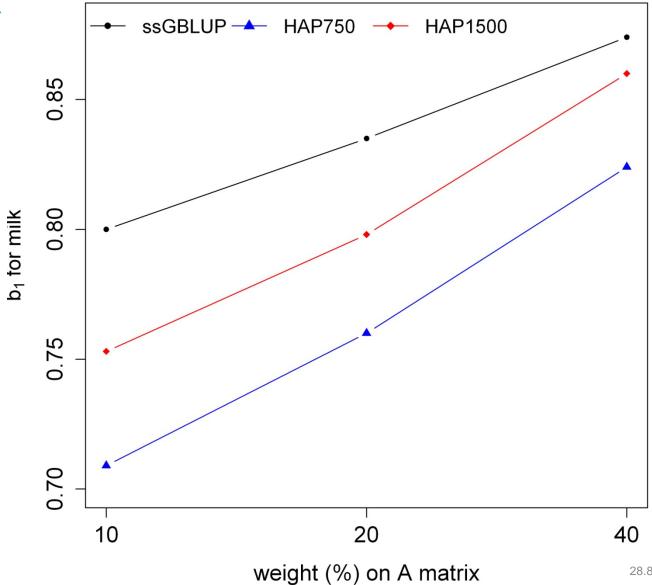

## **Diagonal elements from** ssGBLUP, HAP750 and HAP1500





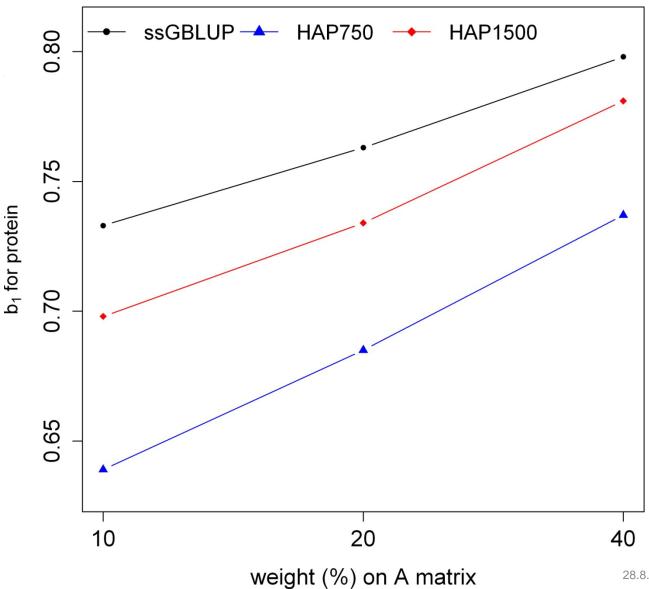

#### Validation reliabilities for milk






### Validation reliabilities for protein






## Inflation factors b<sub>1</sub>: MILK





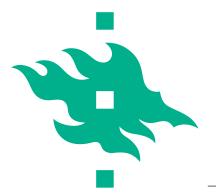
## Inflation factors b<sub>1</sub>: PROTEIN










- The use of haplotype segments appeared to be promising, and highlights a need for balance between the number of haplo-blocks, and the optimal scaling with A
- Evaluations for milk were improved using more haplotype segments i.e., HAP1500 than HAP750
- Reliabilities of haplo-block models tended to increase with increasing weight on A







- Inflation of GEBV was greater with haplo-block models than standard single step
  - ➤ Inflation with haplo-block models was reduced when the weight on **A** increased







