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Why sequence? H=ROSLIN

« |nitial results not exciting
— Data sets WAY TOO SMALL

 Need millions - not thousands
— Feasible in larger breeding programs

 Sequence will be useful

— If enough animals sequenced
* Phenotypes and RECOMBINATION’S

— Next generation genetic improvement
« GS2.0, Genome Editing, Biology



Sequence millions of animals | RS [N

e Will take time

— Approach needs to be competitive with what is
currently done but gives long term advantage

— Genotype technology needs to be cheap and dense
e High coverage seguence Is expensive

 Low coverage sequence is cheaper

— Currently lacking infrastructure
* Imputation and data handling tools, sequencing methods

— Is the data competitive currently?



Low-coverage sequence WROSEIN

 Reduced representation of the genome

 Only sequence a portion of the genome with
only a few reads

e Uses restriction enzymes and multiplexing

 The portion and number of reads can be
controlled by the user

* Higher cost gives higher quality



Low-coverage sequence datal 'R(OS] IN

]

]
Random sequencing GBS sequencing
] Il B N
] Il B N
H Bl B Il B N
] Il B N
I Il B N
T /7 Il B N

Cutting enzymes



GBS at different x

e X =the number of reads at a position
— Sampled from a Poisson distribution
— 1x =1 read, 2x = 2 reads, etc.
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Power of low-coverage




Simulated data ROSLIN

* Coalescent simulator to generate historical
events

— Final generation has Ne of 100

* Drop haplotypes through pedigree

— 2 generations
— 500, 1000, 5000, or 10000 animals per generation

* 4 marker densities/enzymes
— 3k, 10k, 60k, 300k

« Sample GBS from Poisson
e Trait
— h?2=0.35
— 10,000 QTL additive effects from normal distribution




Simulated data

e Train in generation 1

e Predict in generation 2

* Very close relationships

e Ridge regression

 No imputation



Simulated data

« Many questions could be asked

— Power of GBS for genomic selection
 Different densities/enzymes, different x/multiplex

— Effect of using GBS In training population

— Effect of using GBS in prediction population



GBS — same coverage T+P ROS N
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Response to selection

Response to selection

GBS — Total reads in prediction
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Conclusions

GBS is competitive in the short term

— Large training sets with poor quality genotyping are
better

— Large numbers of selection candidates with poor
guality genotyping are better

« With imputation things will be better

* |n the longer term low-coverage sequence data
can be used to generate massive data sets
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