

Use of low-coverage sequence data for genomic selection

John Hickey, Matthew Cleveland, and Gregor Gorjanc

Why sequence?

- Initial results not exciting
 - Data sets WAY TOO SMALL
- Need millions not thousands
 - Feasible in larger breeding programs
- Sequence will be useful
 - If enough animals sequenced
 - Phenotypes and RECOMBINATION'S
 - Next generation genetic improvement
 - GS2.0, Genome Editing, Biology

Sequence millions of animals

- Will take time
 - Approach needs to be competitive with what is currently done but gives long term advantage
 - Genotype technology needs to be cheap and dense
- High coverage sequence is expensive

- Low coverage sequence is cheaper
 - Currently lacking infrastructure
 - Imputation and data handling tools, sequencing methods
 - Is the data competitive currently?

Low-coverage sequence

- Reduced representation of the genome
- Only sequence a portion of the genome with only a few reads

- Uses restriction enzymes and multiplexing
- The portion and number of reads can be controlled by the user
- Higher cost gives higher quality

Low-coverage sequence data

Random sequencing

GBS sequencing

Cutting enzymes

GBS at different x

- x = the number of reads at a position
 - Sampled from a Poisson distribution
 - -1x = 1 read, 2x = 2 reads, etc.

Power of low-coverage

Simulated data

- Coalescent simulator to generate historical events
 - Final generation has Ne of 100
- Drop haplotypes through pedigree
 - 2 generations
 - 500, 1000, 5000, or 10000 animals per generation
- 4 marker densities/enzymes
 - 3k, 10k, 60k, 300k
- Sample GBS from Poisson
- Trait
 - $-h^2 = 0.35$
 - 10,000 QTL additive effects from normal distribution

Simulated data

- Train in generation 1
- Predict in generation 2
- Very close relationships
- Ridge regression
- No imputation

Simulated data

- Many questions could be asked
 - Power of GBS for genomic selection
 - Different densities/enzymes, different x/multiplex
 - Effect of using GBS in training population
 - Effect of using GBS in prediction population

GBS – same coverage T+P

GBS – Total reads in training

GBS – Total reads in prediction

Conclusions

- GBS is competitive in the short term
 - Large training sets with poor quality genotyping are better

- Large numbers of selection candidates with poor quality genotyping are better
- With imputation things will be better

 In the longer term low-coverage sequence data can be used to generate massive data sets