G-BLUP without inverting the genomic relationship matrix

Per Madsen ${ }^{1}$ and Jørgen \emptyset degård ${ }^{2}$

${ }^{1}$ Center for Quantitative Genetics and Genomics
Department of Molecular Biology and Genetics, Aarhus University
${ }^{2}$ AquaGen AS
Genetics and breeding, Ås, Norway

August 22, 2013

Outline

(1) Background
(2) Unsymmetric MME
(3) Test of solver
(4) Conclusions and implications

Traditional BLUP

EBV's are obtained by solving Henderson's MME.

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
Z^{\prime} R^{-1} X & Z^{\prime} R^{-1} Z+G^{-1}
\end{array}\right]\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
Z^{\prime} R^{-1} y
\end{array}\right]
$$

The coefficient matrix is symmetric and involves the inverse of a relationship matrix $\left(G^{-1}\right)$

Traditional BLUP

EBV's are obtained by solving Henderson's MME.

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
Z^{\prime} R^{-1} X & Z^{\prime} R^{-1} Z+G^{-1}
\end{array}\right]\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
Z^{\prime} R^{-1} y
\end{array}\right]
$$

The coefficient matrix is symmetric and involves the inverse of a relationship matrix $\left(G^{-1}\right)$

- In a pedigree based additive model:

$$
G^{-1}=\left(G_{0} \otimes A\right)^{-1}=G_{0}^{-1} \otimes A^{-1}
$$

Traditional BLUP

EBV's are obtained by solving Henderson's MME.

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
Z^{\prime} R^{-1} X & Z^{\prime} R^{-1} Z+G^{-1}
\end{array}\right]\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
Z^{\prime} R^{-1} y
\end{array}\right]
$$

The coefficient matrix is symmetric and involves the inverse of a relationship matrix $\left(G^{-1}\right)$

- In a pedigree based additive model:

$$
G^{-1}=\left(G_{0} \otimes A\right)^{-1}=G_{0}^{-1} \otimes A^{-1}
$$

- In G-BLUP:

$$
G^{-1}=\left(G_{0} \otimes G_{S N P}\right)^{-1}
$$

Alternative formulation of MME

As shown by Henderson (1984), the MME can be rearranged into an unsymmetric system by multiplying the random part with $G=G_{0} \otimes G$

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
G Z^{\prime} R^{-1} X & G\left(Z^{\prime} R^{-1} Z+G^{-1}\right)
\end{array}\right]\left[\begin{array}{c}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
G Z^{\prime} R^{-1} y
\end{array}\right]
$$

Alternative formulation of MME

As shown by Henderson (1984), the MME can be rearranged into an unsymmetric system by multiplying the random part with $G=G_{0} \otimes G$

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
G Z^{\prime} R^{-1} X & G\left(Z^{\prime} R^{-1} Z+G^{-1}\right)
\end{array}\right]\left[\begin{array}{c}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
G Z^{\prime} R^{-1} y
\end{array}\right]
$$

Simplification:

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
G Z^{\prime} R^{-1} X & G Z^{\prime} R^{-1} Z+I
\end{array}\right]\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
G Z^{\prime} R^{-1} y
\end{array}\right]
$$

Alternative formulation of MME

As shown by Henderson (1984), the MME can be rearranged into an unsymmetric system by multiplying the random part with $G=G_{0} \otimes G$

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
G Z^{\prime} R^{-1} X & G\left(Z^{\prime} R^{-1} Z+G^{-1}\right)
\end{array}\right]\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
G Z^{\prime} R^{-1} y
\end{array}\right]
$$

Simplification:

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
G Z^{\prime} R^{-1} X & G Z^{\prime} R^{-1} Z+I
\end{array}\right]\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
G Z^{\prime} R^{-1} y
\end{array}\right]
$$

G^{-1} disappear

Alternative formulation of MME

As shown by Henderson (1984), the MME can be rearranged into an unsymmetric system by multiplying the random part with $G=G_{0} \otimes G$

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
G Z^{\prime} R^{-1} X & G\left(Z^{\prime} R^{-1} Z+G^{-1}\right)
\end{array}\right]\left[\begin{array}{c}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
G Z^{\prime} R^{-1} y
\end{array}\right]
$$

Simplification:

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
G Z^{\prime} R^{-1} X & G Z^{\prime} R^{-1} Z+I
\end{array}\right]\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y \\
G Z^{\prime} R^{-1} y
\end{array}\right]
$$

G^{-1} disappear
G do not need to be positive definite

Solving strategy

Due to the multiplication by G, the "Genomic" part of the unsymmetric MME, and will typically be the major part of the system

Solving strategy

Due to the multiplication by G, the "Genomic" part of the unsymmetric MME, and will typically be the major part of the system

Strategy for solving the unsymmetric MME
1: Setup LHS and RHS
2: if enough memory to hold an factorize the system then
3: \quad Solve by direct methods
(Can be performed by mulitcore LAPACK subroutines)
4: else
5: Use iterative methods
(Gauss-Seidel, PCG, MINRES, ...)
6: end if

Iterative solving strategy

Rearranging the unsymmetric system as:

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & 0 \\
0 & G Z^{\prime} R^{-1} Z+I
\end{array}\right]\left[\begin{array}{c}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y-X^{\prime} R^{-1} Z \hat{u} \\
G Z^{\prime} R^{-1} y-G Z^{\prime} R^{-1} X \hat{\beta}
\end{array}\right]
$$

Iterative solving strategy

Rearranging the unsymmetric system as:

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & 0 \\
0 & G Z^{\prime} R^{-1} Z+I
\end{array}\right]\left[\begin{array}{c}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1} y-X^{\prime} R^{-1} Z \hat{u} \\
G Z^{\prime} R^{-1} y-G Z^{\prime} R^{-1} X \hat{\beta}
\end{array}\right]
$$

Simplification:

$$
\left[\begin{array}{cc}
X^{\prime} R^{-1} X & 0 \\
0 & G Z^{\prime} R^{-1} Z+I
\end{array}\right]\left[\begin{array}{c}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} R^{-1}(y-Z \hat{u}) \\
G Z^{\prime} R^{-1}(y-X \hat{\beta})
\end{array}\right]
$$

Solving strategy

Pseudo code for IOD solver for unsymmetric MME
cd=0
Initiate $\hat{u^{0}}$ (can be a null vector)
while $c d>\varepsilon$ do

$$
y^{* i}=y-Z u^{\hat{i}-1}
$$

Compute β^{i} by solve $X^{\prime} R^{-1} X \hat{\beta^{i}}=X^{\prime} R^{-1} y^{* i}$
(direct or iteratively)
$y^{* * i}=y-X \hat{\beta}^{i}$
Compute $\hat{u^{i}}$ by solve $\left(G Z^{\prime} R^{-1} Z+I\right) \hat{u^{i}}=G Z^{\prime} R^{-1} y^{* * i}$
(iteratively)

$$
c d=\frac{\left\|i^{i-1}-u^{i}\right\|}{\left\|u^{i}\right\|}
$$

end while

Status for implementation in the DMU-package

- Direct solver for unsymmetric MME implemented in DMU4

Status for implementation in the DMU-package

- Direct solver for unsymmetric MME implemented in DMU4
- IOD solver for unsymmetric MME implemented in DMU5

Test of solvers

Solvers tested on the NAV G-BLUP model for Nordic Red Cattle

Data	DRP's (protein) for 3662 bulls
G matrix	5287 animals

Test of solvers

Solvers tested on the NAV G-BLUP model for Nordic Red Cattle

Data	DRP's (protein) for 3662 bulls
G matrix	5287 animals

IOD solver	\# of iterations
Symmetric MME	60

Unsymmetric MME	
Global	173
Non-genomic part	173
Genomic part	570

Test of solvers

Solvers tested on the NAV G-BLUP model for Nordic Red Cattle

Data	DRP's (protein) for 3662 bulls
G matrix	5287 animals

IOD solver	\# of iterations
Symmetric MME	60

Unsymmetric MME	
Global	173
Non-genomic part	173
Genomic part	570

Solutions are identical

Conclusions and implications

Advantages of using unsymmetric MME for G-BLUP:

- Inversion of the genomic relationship matrix is avoided

Conclusions and implications

Advantages of using unsymmetric MME for G-BLUP:

- Inversion of the genomic relationship matrix is avoided
- Dimensions that can be handled increases by an order of magnitude

Conclusions and implications

Advantages of using unsymmetric MME for G-BLUP:

- Inversion of the genomic relationship matrix is avoided
- Dimensions that can be handled increases by an order of magnitude

Further improvements

Conclusions and implications

Advantages of using unsymmetric MME for G-BLUP:

- Inversion of the genomic relationship matrix is avoided
- Dimensions that can be handled increases by an order of magnitude

Further improvements

- As number of typed animals increases, it might be feasible to form elements in G as they are needed using massive parallel computation (GPU's?)

Conclusions and implications

Advantages of using unsymmetric MME for G-BLUP:

- Inversion of the genomic relationship matrix is avoided
- Dimensions that can be handled increases by an order of magnitude

Further improvements

- As number of typed animals increases, it might be feasible to form elements in G as they are needed using massive parallel computation (GPU's?)
- Replacing G by H (the One-Step relationship matrix) See EAAP presentation by \emptyset degård et. al

