Comparison of model reliabilities from single-step and bivariate blending methods

Matti Taskinen ${ }^{1}$
Esa A. Mäntysaari ${ }^{1}$ Martin H. Lidauer ${ }^{1}$ Timo Knürr ${ }^{1}$ Jukka Pösö ${ }^{2}$ Guosheng Su ${ }^{3}$ Gert P. Aamand ${ }^{4}$ Ismo Strandén ${ }^{1}$

${ }^{1}$ MTT Agrifood Research Finland, ${ }^{2}$ FABA, ${ }^{3}$ Aarhus University, ${ }^{4}$ Nordisk Avlsværdivurdering

2013 Interbull Meeting - Nantes, France

Background

- Increasing interest on estimation of model reliability in genomic evaluations:
- Differences exist: range from pedigree accuracy to accuracy of full progeny test
- Reliability is needed as weights for international genomic evaluations

```
GBLUP: the model based reliability is computed through
inversion of MME
    If G ' can be formed then also (MME) -1 can be done (MME is
    size genotyped animals)
In the future genomic evaluations are mostly based on
single-step BLUP (ssGBLUP)
Exact model based reliability estimation requires to invert a matrix
of size all animals
    approximations have been suggested by Misztal et al. 2013 based
    on added genomic information into MME
```


Background

- Increasing interest on estimation of model reliability in genomic evaluations:
- Differences exist: range from pedigree accuracy to accuracy of full progeny test
- Reliability is needed as weights for international genomic evaluations
- GBLUP: the model based reliability is computed through inversion of MME
- If G^{-1} can be formed then also $(M M E)^{-1}$ can be done (MME is size genotyped animals)
In the future genomic evaluations are mostly based on
single-step BLUP (ssGBLUP)
Exact model based reliability estimation requires to invert a matrix of size all animals
approximations have been suggested by Misztal et al. 2013 based on added genomic information into MME

Background

- Increasing interest on estimation of model reliability in genomic evaluations:
- Differences exist: range from pedigree accuracy to accuracy of full progeny test
- Reliability is needed as weights for international genomic evaluations
- GBLUP: the model based reliability is computed through inversion of MME
- If G^{-1} can be formed then also $(M M E)^{-1}$ can be done (MME is size genotyped animals)
- In the future genomic evaluations are mostly based on single-step BLUP (ssGBLUP)
- Exact model based reliability estimation requires to invert a matrix of size all animals
- approximations have been suggested by Misztal et al. 2013 based on added genomic information into MME

Background

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV ${ }^{1}$ and pedigree are combined using bivariate blending
- Bivariate blending (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of $\sqrt{R_{D G V}^{2}}$ to "trait"
- Original bivariate blending was revised for this study (as will be presented)
We wanted to compare model based reliability computed from the full inverse of MME using models:
animal model BLUP (AM-BLUP)
single-step BLUP (ssGBLUP)
bivariate blending using GBLUP (bbGBLUP)

[^0]
Background

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV ${ }^{1}$ and pedigree are combined using bivariate blending
- Bivariate blending (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of
$\sqrt{R_{D G V}^{2}}$ to "trait"
- Original bivariate blending was revised for this study (as will be presented)
- We wanted to compare model based reliability computed from the full inverse of MME using models:
- animal model BLUP (AM-BLUP)
single-step BLUP (ssGBLUP)
bivariate blending using GBLUP (bbGBLUP)

[^1]
Background

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV ${ }^{1}$ and pedigree are combined using bivariate blending
- Bivariate blending (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100\% accuracy, with a correlation of
$\sqrt{R_{D G V}^{2}}$ to "trait"
- Original bivariate blending was revised for this study (as will be presented)
- We wanted to compare model based reliability computed from the full inverse of MME using models:
- animal model BLUP (AM-BLUP)
- single-step BLUP (ssGBLUP)
bivariate blending using GBLUP (bbGBLUP)

[^2]
Background

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV ${ }^{1}$ and pedigree are combined using bivariate blending
- Bivariate blending (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of
$\sqrt{R_{D G V}^{2}}$ to "trait"
- Original bivariate blending was revised for this study (as will be presented)
- We wanted to compare model based reliability computed from the full inverse of MME using models:
- animal model BLUP (AM-BLUP)
- single-step BLUP (ssGBLUP)
- bivariate blending using GBLUP (bbGBLUP)

[^3]
Model reliability: $\mathbf{y}=\mathbf{X b}+\mathbf{Z} \mathbf{u}+\mathbf{e}$

Inverse of the coefficient matrix of the MME:

$$
\mathbf{C}^{-1}=\left[\begin{array}{ll}
\mathbf{C}^{b, b} & \mathbf{C}^{b, u} \\
\mathbf{C}^{u, b} & \mathbf{C}^{u, u}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{V}_{u}^{-1}
\end{array}\right]^{-1}
$$

AM-BLUP: $\mathbf{V}_{u}^{-1}=\frac{1}{\sigma_{u}^{2}} \mathbf{A}^{-1}$
ssGBLUP: $\mathbf{V}_{u}^{-1}=\frac{1}{\sigma_{u}^{2}}\left[\mathbf{A}^{-1}+\left[\begin{array}{cc}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1}-\left(\mathbf{A}_{22}\right)^{-1}\end{array}\right]\right]$ where

- $\mathbf{A}=$ pedigree based relationship matrix
- $\mathbf{G}=$ genomic relationship matrix
- $\mathbf{A}_{22}=$ pedigree based relationships of genotyped animals
where $\left\{\mathbf{C}^{u, u}\right\}_{i}$ is diagonal element corresponding animal i.

Model reliability: $\mathbf{y}=\mathbf{X b}+\mathbf{Z u}+\mathbf{e}$

Inverse of the coefficient matrix of the MME:

$$
\mathbf{C}^{-1}=\left[\begin{array}{ll}
\mathbf{C}^{b, b} & \mathbf{C}^{b, u} \\
\mathbf{C}^{u, b} & \mathbf{C}^{u, u}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{V}_{u}^{-1}
\end{array}\right]^{-1}
$$

AM-BLUP: $\mathbf{V}_{u}^{-1}=\frac{1}{\sigma_{u}^{2}} \mathbf{A}^{-1}$
ssGBLUP: $\mathbf{V}_{u}^{-1}=\frac{1}{\sigma_{u}^{2}}\left[\mathbf{A}^{-1}+\left[\begin{array}{cc}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1}-\left(\mathbf{A}_{22}\right)^{-1}\end{array}\right]\right]$ where

- $\mathbf{A}=$ pedigree based relationship matrix
- $\mathbf{G}=$ genomic relationship matrix
- $\mathbf{A}_{22}=$ pedigree based relationships of genotyped animals

Reliability for animal i :

$$
r_{i}^{2}=1-\frac{\left\{\mathbf{C}^{u, u}\right\}_{i}}{\sigma_{u}^{2}}
$$

where $\left\{\mathbf{C}^{u, u}\right\}_{i}$ is diagonal element corresponding animal i.

Steps in bivariate blending bbGBLUP

- Step 1: get reliabilities from $A M-B L U P \Rightarrow r_{E B V}^{2}$
- Step 2: reliability increase due to genotypes

Steps in bivariate blending bbGBLUP

- Step 1: get reliabilities from AM-BLUP $\Rightarrow r_{E B V}^{2}$
- Step 2: reliability increase due to genotypes

calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

calculate accuracy of added value due to DGV:

[^4]
Steps in bivariate blending bbGBLUP

- Step 1: get reliabilities from AM-BLUP $\Rightarrow r_{E B V}^{2}$
- Step 2: reliability increase due to genotypes
- EDC ${ }^{2}$ for all genotyped animals:
- bull EDC based on non-genotyped daughters
- cow EDC is $\frac{\sigma_{e}^{2} r_{o}^{2}}{\sigma_{u}^{2}\left(1-r_{o}^{2}\right)}$ where $r_{o}^{2}=$ individual Interbull reliability
get reliabilities from GBLUP $\Rightarrow r_{D G V}^{2}$
use EDC from as weight in GBLUP
calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

calculate accuracy of added value due to DGV:

[^5]
Steps in bivariate blending bbGBLUP

- Step 1: get reliabilities from AM-BLUP $\Rightarrow r_{E B V}^{2}$
- Step 2: reliability increase due to genotypes
- EDC ${ }^{2}$ for all genotyped animals:
- bull EDC based on non-genotyped daughters
- cow EDC is $\frac{\sigma_{e}^{2} r_{o}^{2}}{\sigma_{u}^{2}\left(1-r_{o}^{2}\right)}$ where $r_{o}^{2}=$ individual Interbull reliability
- get reliabilities from GBLUP $\Rightarrow r_{D G V}^{2}$
- use EDC from as weight in GBLUP
calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

calculate accuracy of added value due to DGV:

[^6]
Steps in bivariate blending bbGBLUP

- Step 1: get reliabilities from AM-BLUP $\Rightarrow r_{E B V}^{2}$
- Step 2: reliability increase due to genotypes
- EDC ${ }^{2}$ for all genotyped animals:
- bull EDC based on non-genotyped daughters
- cow EDC is $\frac{\sigma_{e}^{2} r_{o}^{2}}{\sigma_{u}^{2}\left(1-r_{o}^{2}\right)}$ where $r_{o}^{2}=$ individual Interbull reliability
- get reliabilities from GBLUP $\Rightarrow r_{D G V}^{2}$
- use EDC from as weight in GBLUP
- calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

$$
E D C_{G}=\frac{r_{D G V}^{2}}{1-r_{D G V}^{2}}-\frac{r_{E B V}^{2}}{1-r_{E B V}^{2}}
$$

calculate accuracy of added value due to DGV:

[^7]
Steps in bivariate blending bbGBLUP

- Step 1: get reliabilities from AM-BLUP $\Rightarrow r_{E B V}^{2}$
- Step 2: reliability increase due to genotypes
- EDC ${ }^{2}$ for all genotyped animals:
- bull EDC based on non-genotyped daughters
- cow EDC is $\frac{\sigma_{\Delta}^{2} r_{o}^{2}}{\sigma_{U}^{2}\left(1-r_{o}^{2}\right)}$ where $r_{o}^{2}=$ individual Interbull reliability
- get reliabilities from GBLUP $\Rightarrow r_{D G V}^{2}$
- use EDC from as weight in GBLUP
- calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:

$$
\mathrm{EDC}_{G}=\frac{r_{D G V}^{2}}{1-r_{D G V}^{2}}-\frac{r_{E B V}^{2}}{1-r_{E B V}^{2}}
$$

- calculate accuracy of added value due to DGV:

$$
r_{a}=\sqrt{1-\frac{1}{\mathrm{EDC}_{G}+1}}
$$

[^8]
bbGBLUP continued

- Step 3:
- bivariate blending model by random regression AM-BLUP:

$$
\mathbf{y}=\mathbf{X b}+\mathbf{K}_{1} \mathbf{u}_{1}+\mathbf{K}_{2} \mathbf{u}_{2}+\mathbf{e}
$$

Solutions in \mathbf{u}_{1} have GEBV.

Values in design matrices K and weights depend on type of the observation. When observation is:

[^9]
bbGBLUP continued

- Step 3:
- bivariate blending model by random regression AM-BLUP:

$$
\mathbf{y}=\mathbf{X b}+\mathbf{K}_{1} \mathbf{u}_{1}+\mathbf{K}_{2} \mathbf{u}_{2}+\mathbf{e}
$$

Solutions in \mathbf{u}_{1} have GEBV.

- Values in design matrices \mathbf{K} and weights depend on type of the observation. When observation is:
same DRP as in AM-BLUP
genomic estimate DGV from GBLUP:

[^10]
bbGBLUP continued

- Step 3:
- bivariate blending model by random regression AM-BLUP:

$$
\mathbf{y}=\mathbf{X b}+\mathbf{K}_{1} \mathbf{u}_{1}+\mathbf{K}_{2} \mathbf{u}_{2}+\mathbf{e}
$$

Solutions in \mathbf{u}_{1} have GEBV.

- Values in design matrices \mathbf{K} and weights depend on type of the observation. When observation is:
- same DRP as in AM-BLUP
$\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0\end{array}\right]$, weights same as in AM-BLUP genomic estimate DGV from GBLUP:

Variances: $\operatorname{Var}\left(\mathbf{u}_{i}\right)=\sigma_{u}^{2} \mathbf{A}, i=1,2$ where σ_{u}^{2} is from AM-BLUP.

bbGBLUP continued

- Step 3:
- bivariate blending model by random regression AM-BLUP:

$$
\mathbf{y}=\mathbf{X b}+\mathbf{K}_{1} \mathbf{u}_{1}+\mathbf{K}_{2} \mathbf{u}_{2}+\mathbf{e}
$$

Solutions in \mathbf{u}_{1} have GEBV.

- Values in design matrices \mathbf{K} and weights depend on type of the observation. When observation is:
- same DRP as in AM-BLUP
$\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0\end{array}\right]$, weights same as in AM-BLUP
- genomic estimate DGV from GBLUP:

$$
\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]=\left[\begin{array}{ll}
\sqrt{r_{a}^{2}} & \sqrt{1-r_{a}^{2}}
\end{array}\right], \text { weights very large (1000) }
$$

Variances: $\operatorname{Var}\left(\mathbf{u}_{i}\right)=\sigma_{u}^{2} \mathbf{A}, i=1,2$ where σ_{u}^{2} is from AM-BLUP.

bbGBLUP continued

- Step 3:
- bivariate blending model by random regression AM-BLUP:

$$
\mathbf{y}=\mathbf{X b}+\mathbf{K}_{1} \mathbf{u}_{1}+\mathbf{K}_{2} \mathbf{u}_{2}+\mathbf{e}
$$

Solutions in \mathbf{u}_{1} have GEBV.

- Values in design matrices \mathbf{K} and weights depend on type of the observation. When observation is:
- same DRP as in AM-BLUP
$\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0\end{array}\right]$, weights same as in AM-BLUP
- genomic estimate DGV from GBLUP:

$$
\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]=\left[\begin{array}{ll}
\sqrt{r_{a}^{2}} & \sqrt{1-r_{a}^{2}}
\end{array}\right], \text { weights very large (1000) }
$$

- Variances: $\operatorname{Var}\left(\mathbf{u}_{i}\right)=\sigma_{u}^{2} \mathbf{A}, i=1,2$ where σ_{u}^{2} is from AM-BLUP.

Data

- Study data was extracted from the production trait evaluation of Nordic Red dairy cattle

For simplicity deregressed proofs (DRP) were assumed NOTE: actual phenotypic data (DRP) were not used! Only the EDCs and pedigree

We assumed $h^{2}=0.50$

Genotype information: after edits, 38194 SNPs from BovineSNP50

Data

- Study data was extracted from the production trait evaluation of Nordic Red dairy cattle
- For simplicity deregressed proofs (DRP) were assumed
- NOTE: actual phenotypic data (DRP) were not used ! Only the EDCs and pedigree

We assumed $h^{2}=0.50$
Genotype information: after edits, 38194 SNPs from BovineSNP50

Data

- Study data was extracted from the production trait evaluation of Nordic Red dairy cattle
- For simplicity deregressed proofs (DRP) were assumed
- NOTE: actual phenotypic data (DRP) were not used ! Only the EDCs and pedigree
- We assumed $h^{2}=0.50$

Genotype information: after edits, 38194 SNPs from BovineSNP50

Data

- Study data was extracted from the production trait evaluation of Nordic Red dairy cattle
- For simplicity deregressed proofs (DRP) were assumed
- NOTE: actual phenotypic data (DRP) were not used ! Only the EDCs and pedigree
- We assumed $h^{2}=0.50$
- Genotype information: after edits, 38194 SNPs from BovineSNP50

Numbers

- Genotyped animals:
- Training animals: genotyped bulls born 2001-2005
- Candidates: genotyped animals born 2006-

> Number of training bulls (genotyped): 1055
> Daughters (w. records) to the training bulls were searched
> - "Best" 522 bulls: 40 daughters
> " "Average" 533 bulls: 10 daughters
> - Total number of daughters for these bulls 26060

Number of candidate animals (genotyped): 1830
607 candidate bulls

- 1223 candidate cows w. records

Pedigree for all above animals were traced but limited to 2 generations $\rightarrow \mathbf{7 3 5 7 9}$ animals in AM-BLUP

From which 67648 cows with records

Numbers

- Genotyped animals:
- Training animals: genotyped bulls born 2001-2005
- Candidates: genotyped animals born 2006-
- Number of training bulls (genotyped): 1055
 Number of candidate animals (genotyped): 1830

607 candidate bulls
1223 candidate cows w. records
Pedigree for all above animals were traced but limited to 2 generations $\rightarrow \mathbf{7 3 5 7 9}$ animals in AM-BLUP

From which 67648 cows with records

Numbers

- Genotyped animals:
- Training animals: genotyped bulls born 2001-2005
- Candidates: genotyped animals born 2006-
- Number of training bulls (genotyped): 1055
- Daughters (w. records) to the training bulls were searched
- "Best" 522 bulls: 40 daughters
- "Average" 533 bulls: 10 daughters
- Total number of daughters for these bulls 26060

Numbers

- Genotyped animals:
- Training animals: genotyped bulls born 2001-2005
- Candidates: genotyped animals born 2006-
- Number of training bulls (genotyped): 1055
- Daughters (w. records) to the training bulls were searched
- "Best" 522 bulls: 40 daughters
- "Average" 533 bulls: 10 daughters
- Total number of daughters for these bulls 26060
- Number of candidate animals (genotyped): 1830
- 607 candidate bulls
- 1223 candidate cows w. records

Pedigree for all above animals were traced but limited to 2 generations $\rightarrow \mathbf{7 3 5 7 9}$ animals in AM-BLUP

From which 67648 cows with records

Numbers

- Genotyped animals:
- Training animals: genotyped bulls born 2001-2005
- Candidates: genotyped animals born 2006-
- Number of training bulls (genotyped): 1055
- Daughters (w. records) to the training bulls were searched
- "Best" 522 bulls: 40 daughters
- "Average" 533 bulls: 10 daughters
- Total number of daughters for these bulls 26060
- Number of candidate animals (genotyped): 1830
- 607 candidate bulls
- 1223 candidate cows w. records
- Pedigree for all above animals were traced but limited to 2 generations $\rightarrow \mathbf{7 3 5 7 9}$ animals in AM-BLUP
- From which 67648 cows with records

Summary of Setup

- Three methods:
- Animal model
- Single-step
- Bivariate blending

Five animal groups examined: - Genotyped:
 - Candidate bulls
 - Candidate cows

Comparing reliabilities

Summary of Setup

- Three methods:
- Animal model
- Single-step
- Bivariate blending
- Five animal groups examined:
- Genotyped:
- Training bulls
- Candidate bulls
- Candidate cows
- Non-genotyped: (not interested, skipped)
- bulls
- cows

Comparing reliabilities

Summary of Setup

- Three methods:
- Animal model
- Single-step
- Bivariate blending
- Five animal groups examined:
- Genotyped:
- Training bulls
- Candidate bulls
- Candidate cows
- Non-genotyped: (not interested, skipped)
- bulls
- cows
- Comparing reliabilities

Results: Animal model vs. Single-step

- X-axis: reliability of Animal model for each animal
- Y-axis: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.

Training bulls: about the same

reliabilities.

Candidate cows: Single-step reliabilities are higher. Candidate bulls:

Single-step reliabilities are clearly higher.
Cows have observations \Rightarrow
reliabilities higher.

Results: Animal model vs. Single-step

- X-axis: reliability of Animal model for each animal
- Y-axis: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.

reliabilities higher.

Results: Animal model vs. Single-step

- X-axis: reliability of Animal model for each animal
- Y-axis: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.

Single-step reliabilities are clearly higher.
Cows have observations \Rightarrow
reliabilities higher.

Results: Animal model vs. Single-step

- X-axis: reliability of Animal model for each animal
- Y-axis: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.
- Candidate bulls:
- Single-step reliabilities are clearly higher.
- Cows have observations \Rightarrow reliabilities higher.

Results: Animal model vs. Bivariate blending

- Now: Y-axis has reliabilities of Bivariate blending

Bivariate blending reliabilities are also higher than Animal model

Results: Animal model vs. Bivariate blending

- Now: Y-axis has reliabilities of Bivariate blending

Bivariate blending reliabilities are also higher than Animal model

Results: Animal model vs. Bivariate blending

- Now: Y-axis has reliabilities of Bivariate blending
- Bivariate blending reliabilities are also higher than Animal model

Results: Single-step vs. Bivariate blending

- Now: comparing Single-step (X-axis) and Bivariate blending (Y -axis)

Bivariate blending reliabilities are lower than Single-step

Results: Single-step vs. Bivariate blending

- Now: comparing Single-step (X-axis) and Bivariate blending (Y -axis)

Bivariate blending reliabilities are lower than Single-step

Results: Single-step vs. Bivariate blending

- Now: comparing Single-step (X-axis) and Bivariate blending (Y -axis)
- Bivariate blending reliabilities are lower than Single-step

Conclusions

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity - and can use standard software used for AM-BLUP

Genomic reliabilities in single-step GBLUP increased - due to genomic information

In general bivariate blending reliability estimates were lower than single-step

Bivariate blending avoided double counting of relationship information \Rightarrow uses less information

Conclusions

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity - and can use standard software used for AM-BLUP
- Genomic reliabilities in single-step GBLUP increased - due to genomic information
also in bivariate blending

In general bivariate blending reliability estimates were lower than single-step

Bivariate blending avoided double counting of relationship information \Rightarrow uses less information

Conclusions

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity - and can use standard software used for AM-BLUP
- Genomic reliabilities in single-step GBLUP increased - due to genomic information
- also in bivariate blending

In general bivariate blending reliability estimates were lower than single-step

Bivariate blending avoided double counting of relationship information \Rightarrow uses less information

Conclusions

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity - and can use standard software used for AM-BLUP
- Genomic reliabilities in single-step GBLUP increased - due to genomic information
- also in bivariate blending
- In general bivariate blending reliability estimates were lower than single-step

Bivariate blending avoided double counting of relationship information \Rightarrow uses less information

Conclusions

- Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity - and can use standard software used for AM-BLUP
- Genomic reliabilities in single-step GBLUP increased - due to genomic information
- also in bivariate blending
- In general bivariate blending reliability estimates were lower than single-step
- Bivariate blending avoided double counting of relationship information \Rightarrow uses less information

Acknowledgements

- Nordic genomic selection project (VikingGenetics, Aarhus University, NAV, FABA, Svensk Mjölk (Växa Sverige)) provided the genotypes
- NAV and FABA provided the data

[^0]: ${ }^{1}$ Direct Genomic Value

[^1]: ${ }^{1}$ Direct Genomic Value

[^2]: ${ }^{1}$ Direct Genomic Value

[^3]: ${ }^{1}$ Direct Genomic Value

[^4]: ${ }^{2}$ Effective Daughter Contribution

[^5]: ${ }^{2}$ Effective Daughter Contribution

[^6]: ${ }^{2}$ Effective Daughter Contribution

[^7]: ${ }^{2}$ Effective Daughter Contribution

[^8]: ${ }^{2}$ Effective Daughter Contribution

[^9]: Variances: $\operatorname{Var}\left(\mathbf{u}_{i}\right)=\sigma_{u}^{2} \mathbf{A}, i=1,2$ where σ_{u}^{2} is from AM-BLUP.

[^10]: Variances: $\operatorname{Var}\left(\mathbf{u}_{i}\right)=\sigma_{u}^{2} \mathbf{A}, i=1,2$ where σ_{u}^{2} is from AM-BLUP.

