Methods and Data

Results

Discussion 000 0000

Effect of cows in the reference population: First results in Swiss Brown Swiss

Beat Bapst, Christine Baes, Franz Seefried, Birgit Gredler

Qualitas AG, 6300 Zug, Switzerland

2013 Interbull Open Meeting, August 24-25, 2013; Nantes, France

Results

Discussion 000 0000

Why genotype cows?

- Population level
 - Enlarging the reference population for increasing accuracy of genomic selection
 - \Rightarrow important for small breeds
 - Revealing the population structures (e.g. for imputation)
 - Finding new valuable families
 - Detecting genetic defects (e.g. BH2)
- Farm level
 - Selection at an early stage of life
 - Information for mating
 - Parentage verfication
 - Detecting genetic defects

Including cows in the reference population: state of the art

- Only a few countries have included genotyped cows in the reference population:
 - US: HOL, BSW, JER
 - AUS: HOL, JER
 - NZL: ? ...
- Only a few investigations based on real data are published regarding the reliability gain:
 - Pryce et al. (2013)
 -

Methods	and	Data
00		

Results

Discussion 000 0000

Motivation

• In Switzerland available: 1429 and 6309 BSW genotypes (without Intergenomics genotypes)

- How much is the **reliability gain** by including cows in our Swiss Brown Swiss population?
 - \Rightarrow step 1

- Which cows should be genotyped?
 - \Rightarrow step 2

• Does the origin of a cow have an influence on the accuracy gain? \Rightarrow step 3 QUALITA

Methods and Data •O OO Results

Discussion 000 0000

Methods

• Estimating marker effects and direct genomic values (dgv):

- Prediction of breeding values from genomic data: Bayesian approach (BayesC), using the software GenSel (Fernando and Garrick, 2010)
- Input ("phenotypic") data: Deregressed proofs (Garrick et al., 2009)
- Validation: accuracy: r_{dgv,ebv}
- Computing the genomic relationship matrix (gmatrix): VanRaden, 2008

Methods and Data ○● ○○ Results

Discussion 000 0000

Validation process

- Forward prediction
- Random sample from bull subset (birth year 05 08 = youngest sires) → validation set old bulls + remaining part of the youngest sires → reference population
- one run cows included, one run without cows \rightarrow comparison of the accuracies $\cong \ 1$ replication
- totally 120 replications

Methods and Data ○○ ●○ Results

Discussion 000 0000

SNPs and number of genotyped cows

- 48194 SNP
 - Call rate ≥ 0.90

	Requirements	Origin	n
Bulls	Rel. production% \geq 65	Braunvieh Schweiz	1650
Bulls	Rel. production% \geq 65	bilateral exchange	2435
Bulls total			4085
Cows	Rel. production% \geq 50	Braunvieh Schweiz	264
		elite cow program	
Cows	Rel. production $\% \ge 50$	LIB project	972
Cows total			1236
Total			5321

QUALITAS®

Discussion 000 0000

Step 1: Different Strategies Composition of the reference populations

Strategy	Reference	Milk kg		Somatic cell count			
	population	Bulls	Cows	Total	Bulls	Cows	Total
		n	n	n	n	n	n
All	Bulls Rel $\% \ge 65$	4085	1236	5321	3891	1162	5052
	Cows Rel $\% \ge 50$						
Cow55	Bulls Rel $\% \ge 65$	4085	1189	5274	3891	1014	4905
	Cows Rel $\% \ge 55$						
Cow60	Bulls Rel $\% \ge 65$	4085	1021	5106	3891	396	4287
	Cows Rel $\% \ge 60$						
Cow65	Bulls Rel $\% \ge 65$	4085	243	4328	3891	45	3936
	Cows Rel % \geq 65						

QUALITAS[®]

Methods and Data

Results

Discussion 000 0000

Step 1: Gain of accuracy Milk kg

Methods and Data

Results

Discussion 000 0000

Step 1: Gain of accuracy Somatic cell score

Step 2: Accuracy by different relationsships of the bull- and cowsubset in the reference population

11/19

Results

Discussion 000 0000

Step 3: Influence of different origins of cow groups?

Discussion and outlook I

- The effect of including 1000 cows in the existing CHE BSW reference population (about 4100 bulls) is small \rightarrow not enough cows
 - Pryce et al. (2013): 3000 HOL bulls + 10000 HOL cows in AUS \rightarrow +4-8% reliability gain
- Trait dependent
- Composition of the bull and cow set in the reference population seems to have an influence
 → important to genotype/include the appropriate cows
- Covering the whole genetic diversity of the population (Pszczola et al., 2012)
 - ightarrow see next figure

Results

Discussion

Composition of the reference population

QUALITAS[®]

Results

Discussion

Discussion and outlook II

- For us: Including cows in the reference population → Reducing bias of cows dgvs/gebvs?
 applying approach Wiggans et al.(2011, 2012)
- Genotyping cows must go on © (cost/benefit)
 - The number of bulls with accurate ebvs is limited
 - Exploring female specific traits
 - ...see introduction
- Exchange cow genotypes (phenotypes: cow ebv exchange)
- Vision: Genotyping should be so cheap that herdbook registration requires a valid genotype

Methods	and	Data
00		

Results

Discussion 000 000

Thank you

- for your **attention**
- Financial support:

Association of Swiss Cattle Breeders (ASR)

• Provision of genotypes:

Braunvieh Schweiz, Genotype pool Germany-Austria, Associazione Nazionale Allevatori Bovini della Razza Bruna and Beltsville Agricultural Research Centre

• The authors gratefully acknowledge **co-funding** from the European Commission under LowInputBreeds, FP7 – project No KBBE 222 632

(The views expressed by the authors do not necessarily reflect the views of the European Commission, nor do they in any way anticipate the Commission's future policy in this area)

- agn Genetics GmbH for providing computing capacity
- Team Qualitas AG: Madeleine Berweger, Andreas Bigler, Jürg Moll, Urs Schnyder, Urs Schuler

Methods and Data

Results

Discussion

Questions?

17 / 19

Introduction: Example of validation process

Methods and Data

Results

Discussion

Validation process

Run n with cows	
	identical random sample

	Whole genotype pool			
Birth year	1960	1990	2005	2008
	Bulls	Cows		
			Bulls for validation	

UALITAS°

19/19