

Walloon single step genomic evaluation system integrating local and MACE EBV

F.G. Colinet¹, J. Vandenplas^{1,2}, P. Faux¹, S. Vanderick¹, R. Renaville¹, C. Bertozzi³, H. Hubin³, and N. Gengler¹

¹ University of Liège, Gembloux Agro-Bio Tech, Belgium

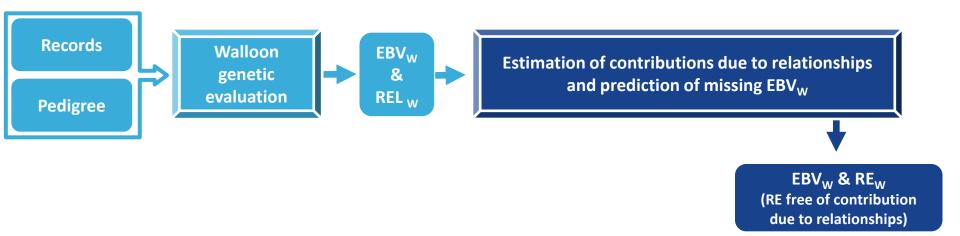
² National Fund for Scientific Research, Belgium

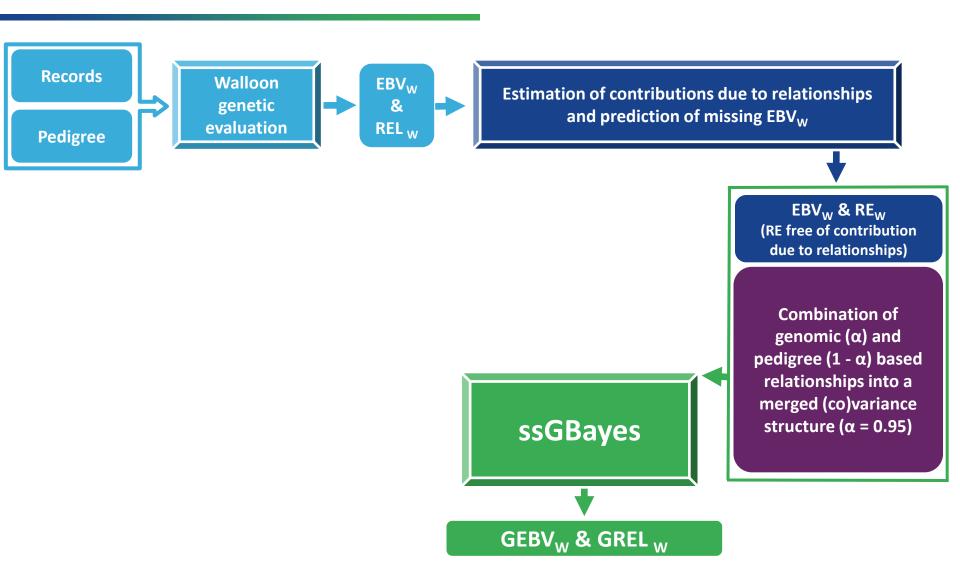
³ Walloon Breeding Association, Belgium

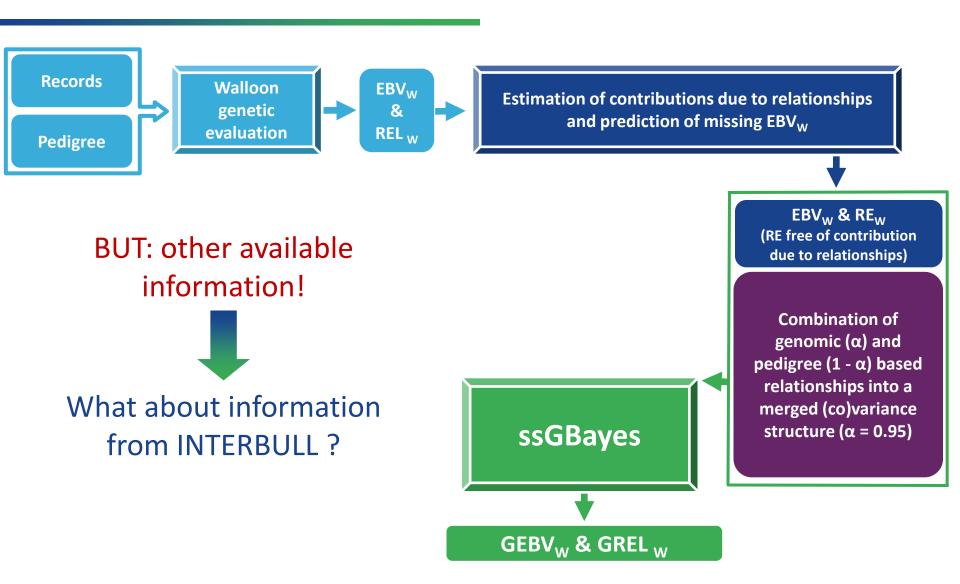
Context

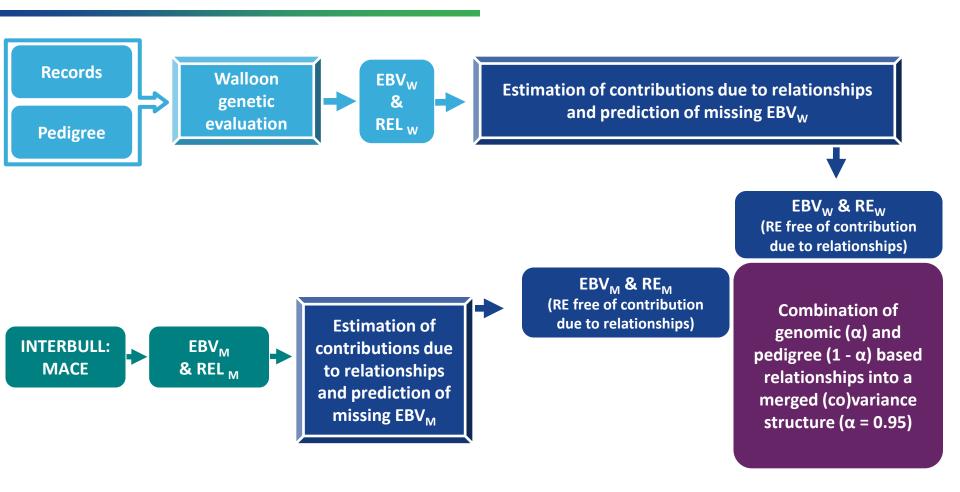
- Walloon dairy cattle:
 - Small scale population
 - > Foreign AI sires of:
 - ❖ 87% of cows in 1st to 3rd lactation in 2012, of which:
 - √ 25% sired by 371 bulls born in USA
 - √ 16% sired by 298 bulls born in NLD
 - ✓ 16% sired by 110 bulls born in FRA
 - √ 15% sired by 240 bulls born in DEU
 - √ 12% sired by 177 bulls born in CAN
 - √ 16% sired by bulls born in other countries
- Most reliable GEBV if estimated from all available sources

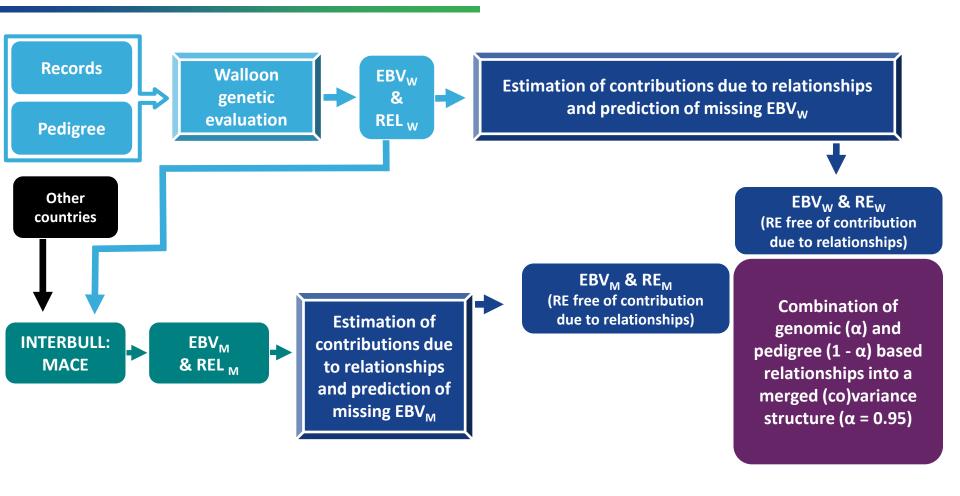
Context

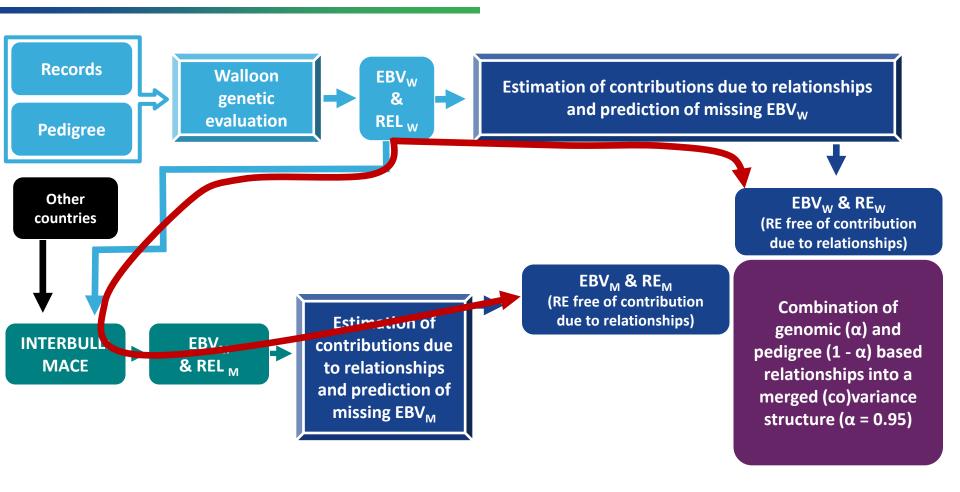

- □ Single-step genomic evaluation (ssGBLUP):
 - Simultaneous combination of genomic, pedigree and phenotypic information
- Current limitation
 - Only available local records used
 - > External phenotypic information (e.g., available as MACE EBV) not used

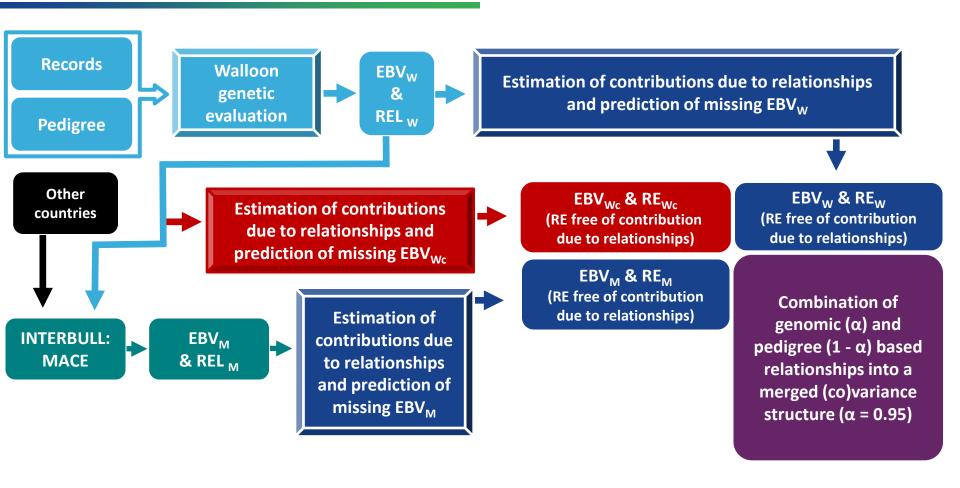

Aim

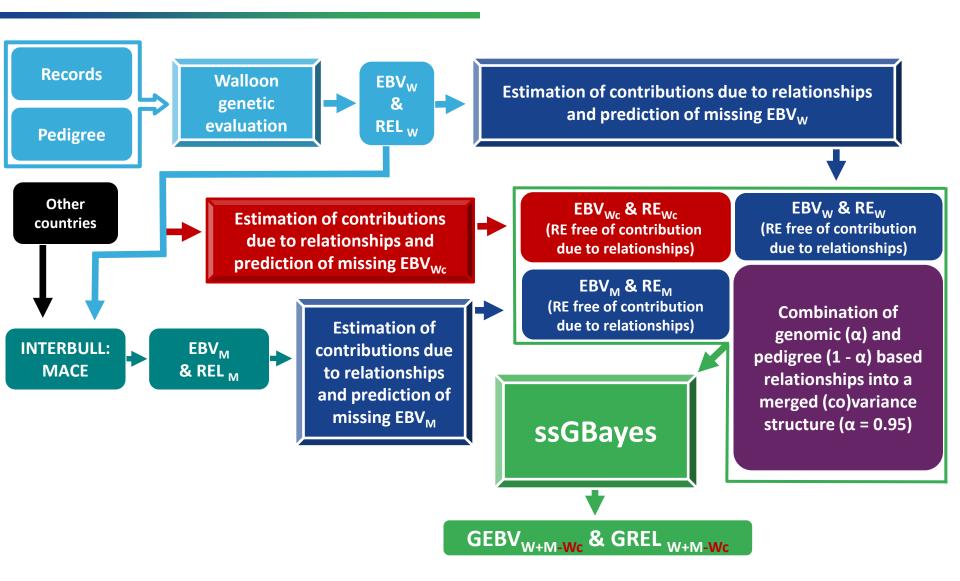

- □ To develop a genomic evaluation adapted to Walloon dairy cattle
 - → Needs to combine simultaneously:
 - Genotypes
 - Pedigree
 - Local information
 - > Foreign information
- Local and foreign information:
 - Considered as a priori known external information
 - Incorporated using a Bayesian approach
 - Correct propagation of all this information without multiple considerations of contributions due to relationships and due to records
- Miming hypothetical mixed model equations and replacing pedigree information by combined pedigree and genomic information → Bayesian single step Genomic Evaluation: ssGBayes











Double counting of information!!

Combination of genotype, pedigree, local and foreign information

→ ssGBayes

$$(H^{-1} + \Lambda_{W} + \Lambda_{M} - \Lambda_{Wc})\hat{a} = D_{W}^{-1} \hat{u}_{W} + D_{M}^{-1} \hat{u}_{M} - D_{Wc}^{-1} \hat{u}_{Wc}$$

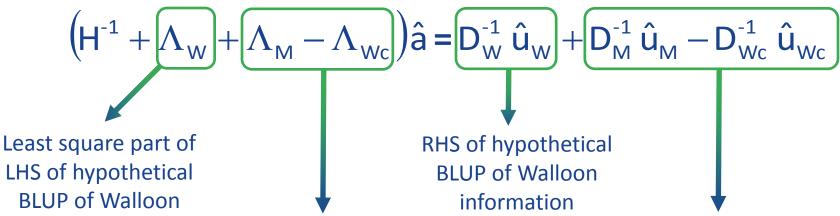
 \rightarrow H: Combined genomic (α) and pedigree (1 – α) based

relationships into a merged (co)variance structure

 $(\alpha = 0.95)$

⇒ â:
GEBV_{W+M-Wc}

 $> \hat{\mathbf{u}}_{\mathrm{W}}, \hat{\mathbf{u}}_{\mathrm{M}}$ and $\hat{\mathbf{u}}_{\mathrm{Wc}}$: Available and predicted $\mathrm{EBV}_{\mathrm{W}}$, $\mathrm{EBV}_{\mathrm{M}}$ and $\mathrm{EBV}_{\mathrm{Wc}}$


 \rightarrow D_W,D_M and D_{Wc} : Prediction error (co)variance matrix of \hat{u}_W,\hat{u}_M and \hat{u}_{Wc}

Combination of genotype, pedigree, local and foreign information

information

Least square part of LHS of hypothetical BLUP of foreign information free of Walloon information

RHS of hypothetical BLUP of foreign information free of Walloon information

For more information about the theory behind this equation, see presentation of Vandenplas et al. at EAAP meeting, session 34, Wednesday 28th PM

Data

- □ 1,903 genotyped animals
 - 1,378 bulls and 525 cows
 - > 38,604 SNP after editing
- 6-generations extracted pedigree: 16,234 animals
- Traits: milk, fat and protein yields, SCS, longevity, stature and udder support
- Walloon EBV (EBV_w)
- MACE EBV (EBV_M)
- Bulls with Walloon EBV contributing to MACE (EBV_{Wc})

Data

- □ 1,903 genotyped animals
 - 1,378 bulls and 525 cows
 - > 38,604 SNP after editing
- □ 6-generations extracted pedigree: 16,234 animals
- □ Traits: milk, fat and protein yields, SCS, longevity, stature and udder support *e.g.*: MILK
- □ Walloon EBV (EBV_W) 12,046
- \square MACE EBV (EBV_M) 1,981
- □ Bulls with Walloon EBV contributing to MACE (EBV_{wc}) 601
- Reliabilities (REL) for all GEBV obtained through inversion of left-hand side

Class of REL _W	N	EBV _w ¹	GEBV _w ²
< 0.50	647	0.25 (0.12)	0.44 (0.09)

¹ REL obtained from Walloon polygenic evaluation

 $^{^{2}}$ REL obtained from Walloon genomic evaluation using only EBV $_{\mathrm{W}}$

Class of REL _w	N	EBV _w ¹	GEBV _w ²	GEBV _{W+M-Wc} ³
< 0.50	647	0.25 (0.12)	0.44 (0.09)	0.80 (0.09)

¹ REL obtained from Walloon polygenic evaluation

² REL obtained from Walloon genomic evaluation using only EBV_w

³ REL obtained from Walloon genomic evaluation using EBV_W, EBV_M and EBV_{Wc}

Class of REL _W	N	EBV _w ¹	GEBV _w ²	No. of publishable GEBV	GEBV _{W+M-Wc} ³	No. of publishable GEBV
< 0.50	647	0.25 (0.12)	0.44 (0.09)	194	0.80 (0.09)	628

¹ REL obtained from Walloon polygenic evaluation

² REL obtained from Walloon genomic evaluation using only EBV_w

 $^{^3}$ REL obtained from Walloon genomic evaluation using $\mathrm{EBV}_\mathrm{W}\!,\,\mathrm{EBV}_\mathrm{M}$ and EBV_Wc

Class of REL _W	N	EBV _w ¹	GEBV _w ²	No. of publishable GEBV	GEBV _{W+M-Wc} ³	No. of publishable GEBV
< 0.50	647	0.25 (0.12)	0.44 (0.09)	194	0.80 (0.09)	628
0.50 - 0.74	173	0.63 (0.07)	0.69 (0.06)	173	0.87 (0.05)	173

¹ REL obtained from Walloon polygenic evaluation

² REL obtained from Walloon genomic evaluation using only EBV_w

 $^{^3}$ REL obtained from Walloon genomic evaluation using EBV_Wr EBV_M and EBV_Wc

Class of REL _W	N	EBV _w ¹	GEBV _w ²	No. of publishable GEBV	GEBV _{W+M-Wc} ³	No. of publishable GEBV
< 0.50	647	0.25 (0.12)	0.44 (0.09)	194	0.80 (0.09)	628
0.50 - 0.74	173	0.63 (0.07)	0.69 (0.06)	173	0.87 (0.05)	173
≥ 0.75	390	0.90 (0.07)	0.91 (0.06)	390	0.94 (0.04)	390

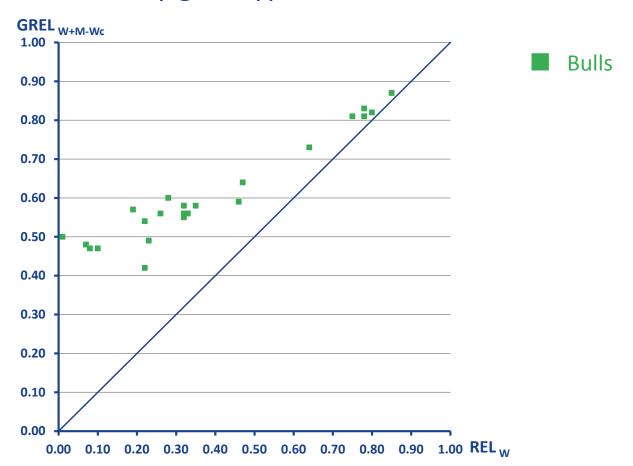
¹ REL obtained from Walloon polygenic evaluation

² REL obtained from Walloon genomic evaluation using only EBV_w

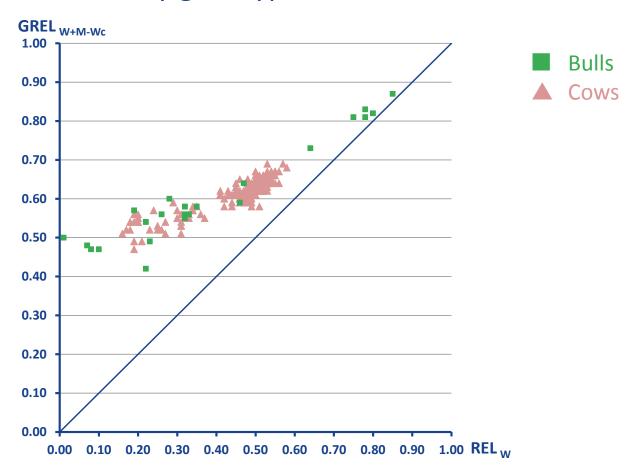
 $^{^3}$ REL obtained from Walloon genomic evaluation using EBV_Wr EBV_M and EBV_Wc

Results: All traits

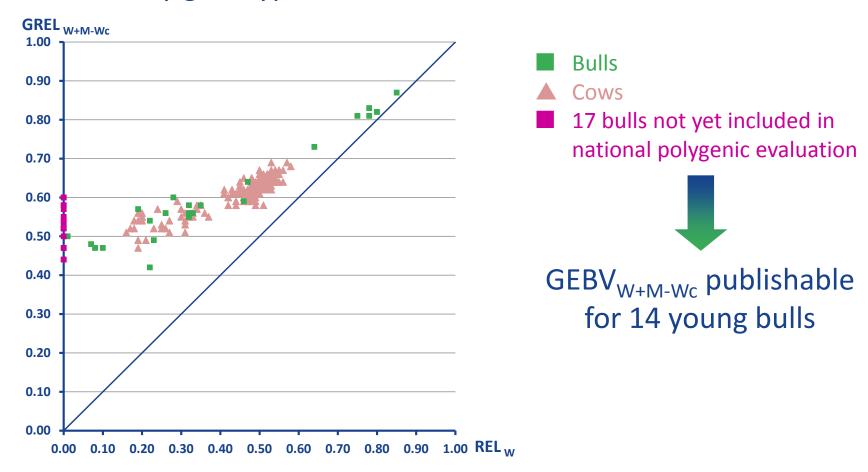
Tuoite	REL _w < 0.50					
Traits	N	EBV _W ¹	GEBV _w ²	GEBV _{W+M-Wc} ³		
Milk yield	647	0.25 (0.12)	0.44 (0.09)	0.80 (0.09)		
Fat yield	642	0.26 (0.12)	0.45 (0.09)	0.80 (0.09)		
Protein yield	644	0.26 (0.12)	0.44 (0.09)	0.80 (0.09)		
SCS	682	0.25 (0.12)	0.43 (0.09)	0.84 (0.12)		
Longevity	889	0.23 (0.12)	0.36 (0.09)	0.51 (0.09)		
Stature	632	0.28 (0.10)	0.46 (0.08)	0.82 (0.13)		
Udder support	699	0.28 (0.10)	0.43 (0.08)	0.71 (0.14)		


¹ REL obtained from Walloon polygenic evaluation

² REL obtained from Walloon genomic evaluation using only EBV_w


 $^{^3}$ REL obtained from Walloon genomic evaluation using EBV $_{
m Wr}$ EBV $_{
m M}$ and EBV $_{
m Wc}$

 Increase of REL for genotyped animals without MACE results and sired by genotyped bulls with MACE results



□ Increase of REL for genotyped animals without MACE results and sired by genotyped bulls with MACE results

□ Increase of REL for genotyped animals without MACE results and sired by genotyped bulls with MACE results

Results: All traits

 Average REL (SD) associated to GEBV_{W+M-Wc} for genotyped bulls without MACE result and sired by genotyped bulls with MACE result

Traits	0.01 ≤ REL _W ≤ 0.24				
Iraits	N	GEBV _{W+M-Wc} 1	No. of publishable GEBV		
Milk yield	8	0.49 (0.05)	3		
Fat yield	8	0.49 (0.05)	4		
Protein yield	8	0.49 (0.05)	3		
SCS	9	0.52 (0.05)	8		
Longevity	14	0.37 (0.06)	8		
Stature	21	0.51 (0.04)	14		
Udder support	21	0.46 (0.05)	14		

 $^{^{1}}$ REL obtained from Walloon genomic evaluation using EBV $_{\rm W}$, EBV $_{\rm M}$ and EBV $_{\rm Wc}$

Results: All traits

□ Average REL (SD) associated to GEBV_{W+M-Wc} for genotyped bulls without MACE result, not yet included in national polygenic evaluation and sired by genotyped bulls with MACE result

Traits	Missing REL _w → new young bulls				
Iraits	N	GEBV _{W+M-Wc} 1	No. of publishable GEBV		
Milk yield	17	0.53 (0.05)	13		
Fat yield	17	0.53 (0.06)	13		
Protein yield	17	0.53 (0.05)	13		
SCS	20	0.54 (0.05)	19		
Longevity	23	0.38 (0.05)	18		
Stature	21	0.54 (0.06)	15		
Udder support	21	0.47 (0.07)	15		

 $^{^{1}}$ REL obtained from Walloon genomic evaluation using EBV $_{\rm W}$, EBV $_{\rm M}$ and EBV $_{\rm Wc}$

Conclusion

- Bayesian approach integrates well MACE results into ssBLUP
 - → Recovers indirectly large amount of phenotypic information
- Correct propagation of all available information
- Double counting of contributions due to relationships and own records avoided
- More accurate prediction for genotyped animals
- □ Increase of publishable GEBV number

Thank you for your attention

- Acknowledgments for financial support
 - Service Public de Wallonie (SPW DGO3, Belgium) through project D31-1274 DairySNP
 - National Fund for Scientific Research and Wallonie Brussels International for scientific stays
 - Fonds National de le Recherche Luxembourg (FNR)
- Acknowledgments
 - CECI for computational resources
 - Animal and Dairy Science Department, University of Georgia, Athens, USA
 - Animal Science Department,
 University of Ljubljana, Slovenia

Corresponding author's e-mail: Frederic.Colinet@ulg.ac.be

