

UPDATE OF THE NZ NATIONAL BREEDING OBJECTIVE

Interbull Meeting – Nantes – August 2013

Acknowledgements

- Jeremy Bryant DairyNZ and NZAEL
- Rachel Wood AEU
- Bevin Harris and Dave Johnson LIC
- Dave Hayman Liberty Genetics
- Phil Beatson CRV Ambreed
- Nicolas Lopez Villalobos and Hugh Blair Massey University
- Ken Dodds AgResearch
- Bruce Thorrold DairyNZ

- Peter Amer
- Bruno Santos
- Cameron Ludemann
- Tim Byrne
- Peter O'Neil

Background

- The New Zealand dairy industry has been well served by genetic improvement
- □ Self determined genetic trend unlike many others
- Pasture based production systems
- □ Seasonal calving
- Competing AI companies
- Industry good organisation oversight
 - DairyNZ
 - NZAEL

The process

- □ Farmer workshops
- □ Novel survey based approach farmer preferences
- □ Wide range of views
- Increasing preference for functional cows
- □ New bio-economic model (spreadsheet)
- International and internal review plus further industry consultation
- □ New index weightings released Feb 2012
- Economic values under development for new traits

Key change – feed costs

- ☐ Historically a fixed feed constraint
 - More feed required = less cows = less profit
 - High cost of feed, same for all stock classes
- New model has region and season specific feed costs
 - Spring and summer feed costs low (surplus)
 - Winter and autumn feeds costs high (supplements)

Key change – feed costs

- Used rescaling theory to maintain assumption of fixed farm pasture resource
- Modest impact on existing traits
- Seasonal feed prices useful for new traits
 - Body condition score (mobilisation saves cheap spring feed, and gets replaced with expensive autumn feed)
 - Persistency (persistent cows shift feed requirements to more expensive feed periods)

- Survival now has a higher economic value, because
 - saved cost of a replacement is high
 - benefits from voluntary culling are more modest
- Survival EV contributes to the economic values of
 - Fertility (many cows culled for poor fertility)
 - Somatic cell score (many cows culled for high SCC)

Effective trait emphasis

Correlation

Effect on breed averages

- Jersey (+9.2) and KiwiCross (+5.0)
- Friesian (-12.4), Ayrshire (-10.6) and Other (-19.2)
 - largely due to the increased emphasis on fertility in BW

Top 100 bulls

Breed	2012	2013
Friesian	45	41
Jersey	23	28
Crossbred	32	31

Theoretical rates of genetic gain

Summary

- □ Timely review of NZ breeding objective
- Benefits from a broad, more independent team
- Meaningful change
- More fertile and functional cows
- □ In line with farmer preferences
- More work to do
 - Body condition score!