Comparison of genomic selection approaches for small breeds

C. Hozé^{1,2}, S. Fritz², D. Boichard¹, V. Ducrocq¹, P. Croiseau¹ 1 INRA, UMR 1313, GABI, Jouy-en-Josas, France 2 UNCEIA, 149 rue de Bercy, Paris, France

SCIENCE & IMPAC

le réseau de la génétique animale

NCEIA

Context

- Genomic selection aims to predict breeding values (EBV) using DNA information
- Evaluations are accurate when reference population (RP) is large and are now implemented worldwide
- In France : implemented for the 3 main dairy breeds
- For small breeds : constitution of RP is challenging
 - Technically: low number of progeny tested bulls per year
 - Economically: proportionally higher genotyping cost

Reference population size in France

Holstein : 24 772

Abondance : 209

Brown Swiss : 90

Montbéliarde : 2616

Tarentaise : 185

Vosgienne : 54

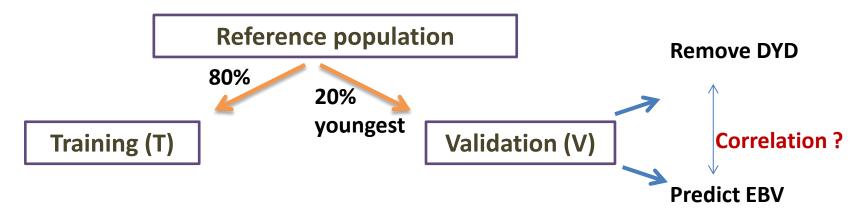
Normande : 2344

Simmental : 125

Pie Rouge : 51

In dairy cattle : From 50 to 25 000 bulls per breed

Context


- How to implement GS with < 500 animals ?</p>
 - Within breed
 - Across breeds
 - Pool RP from several breeds and develop multi-breed GS
 - Take advantage of short distance LD from HD-genotypes
- Three approaches tested here :
 - **1)** Multi-breed GS for small breeds
 - **2)** Within-breed GS for small breeds
 - **3)** Comparison with GS results for large breeds

Methods

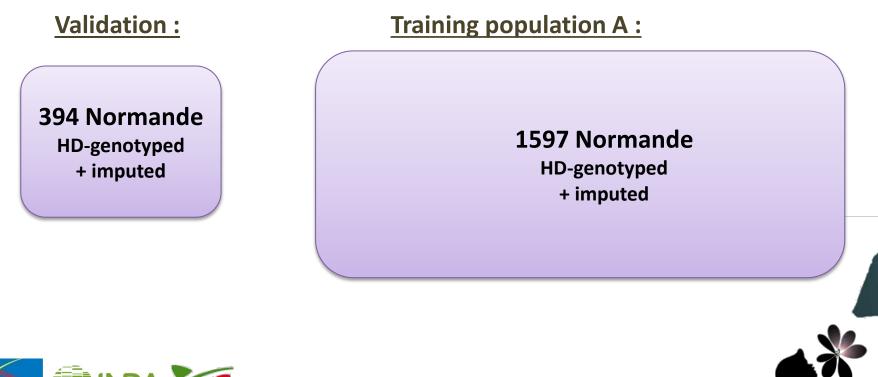
• How to estimate accuracy of GS ?

• For small breeds : unstable results because of limited number of validation animals

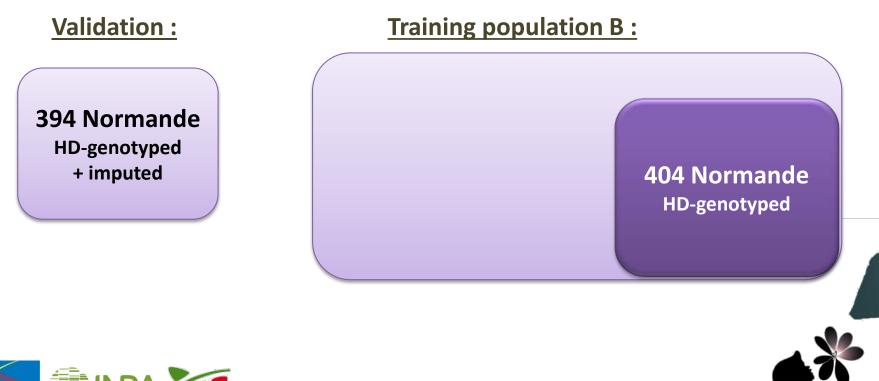
Use a large breed (Normande breed) to mimic small breeds

Reduce the training dataset but not the validation dataset

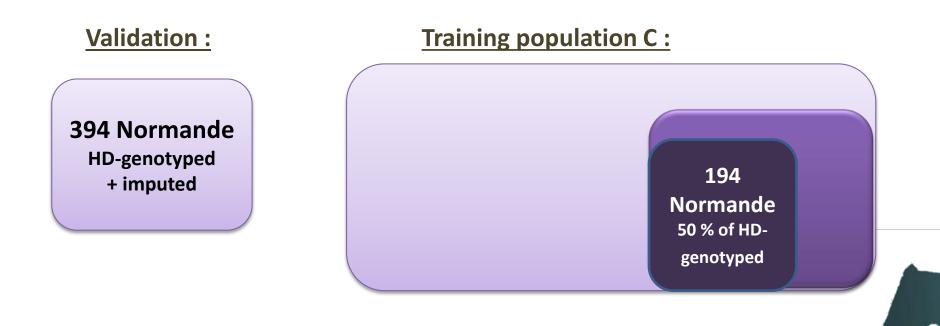
Method


- Set up of a large HD reference population
 - **1)** Genotype a population on the HD chip (« imputation pop »)
 - 2) Impute the reference population genotyped on the 50K chip
 - Imputation accuracy > 99% (Hoze et al., GSE 2013)
 - Outcome : a large reference population with HD-genotypes

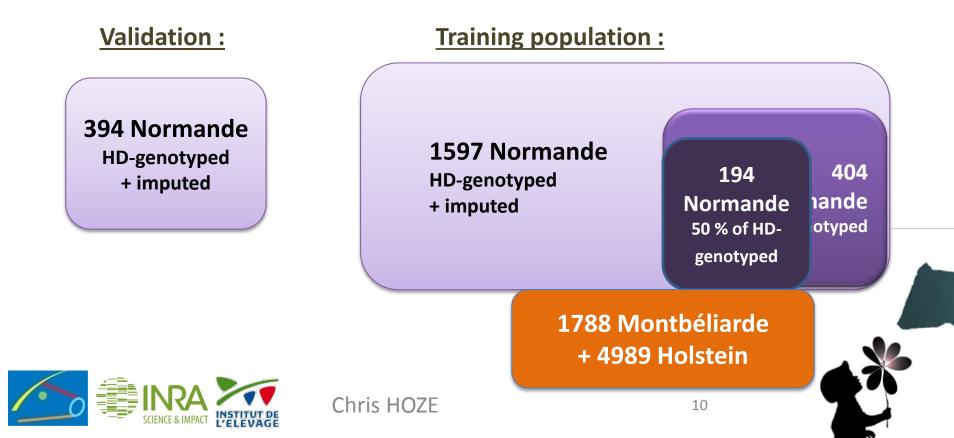
	Montbéliarde (MO)	Holstein (HO)	Normande (HO)
HD-genotyped	527	773	535
Bulls with daughters in France (EDC > 5 ; imputed + genotyped)	1788	4989	1991


Validation set : 20% youngest bulls Dataset A : All but validation set

Chris HOZE


Validation set : 20% youngest bulls Dataset B : Only HD-genotyped bulls of dataset A

Validation set : 20% youngest bulls


Dataset C : 50 % of dataset B (randomly chosen)

For multi-breeds studies :

Set A, B or C pooled with bulls from Montbéliarde and Holstein

Methods : evaluations models

- BLUP : pedigree based model
- **BayesC** (GS3 software *Legarra et al.*) with parameters :
 - 1% of SNPs (≈ 7000) with a non-zero effect
 - 30% of genetic variance explained by residual polygenic
- Bull's phenotypes :
 - DYD (Daughter yield deviation) standardized per breed :
 - Derived from national genetic evaluation
 - Centered and divided by genetic standard deviation of the breed
 - Trait studied
 - Milk / Fat Yield (FY) / Protein Yield (PY)
 - Fat % / Protein % / Somatic Cell Score (SCS)

Results : Accuracy of prediction

Correlation and average regression slope

between predicted EBV and DYD

<u>Situation A</u> : 194 T / 394 V

	Milk	FY	ΡΥ	Fat%	Pro%	SCS	Average corr	Average slope
BLUP	0.13	0.08	0.13	0.22	0.24	0.28	0.180	0.52
BayesCpi Within-breed GS	0.17	0.17	0.17	0.29	0.35	0.32	0.247	0.54
BayesCpi Multi-breed GS (+ 1788 MO +4989HO)	0.23	0.24	0.24	0.36	0.35	0.29	0.285	0.59

- + 6.7 % correlation with within-breed GS
- + 3.8 % correlation with multi-breed GS

Results : Accuracy of prediction

Correlation and average regression slope between predicted EBV and DYD

<u>Situation B</u> : 404 T / 394 V

	Milk	FY	ΡΥ	Fat%	Pro%	SCS	Average corr	Average slope
BLUP	0.23	0.30	0.24	0.31	0.38	0.40	0.310	0.66
BayesCpi Within-breed GS	0.31	0.39	0.33	0.40	0.47	0.42	0.387	0.73
BayesCpi Multi-breed GS (+ 1788 МО +4989НО)	0.35	0.40	0.35	0.48	0.49	0.43	0.416	0.71

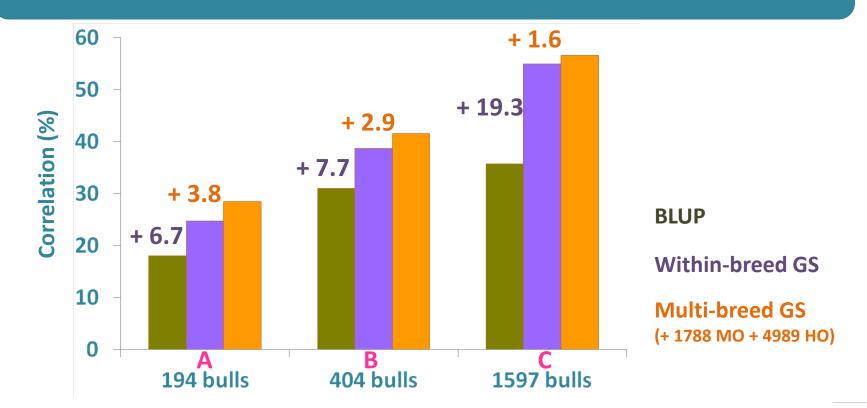
- + 7.7 % correlation with within-breed GS
- + 2.9 % correlation with multi-breed GS

Results : Accuracy of prediction

Correlation and average regression slope

between predicted EBV and DYD

<u>Situation C</u> : 1597 T / 394 V


	Milk	FY	ΡΥ	Fat%	Pro%	SCS	Average corr	Average slope
BLUP	0.32	0.35	0.30	0.35	0.40	0.43	0.357	0.76
BayesCpi Within-breed GS	0.48	0.49	0.49	0.64	0.63	0.56	0.550	0.875
BayesCpi Multi-breed GS (+ 1788 MO + 4989 HO)		0.52	0.51	0.65	0.64	0.57	0.566	0.863

- + 19.3 % correlation with within-breed GS
- + 1.6 % correlation with multi-breed GS

Results : Impact of reference population size

• When increasing within breed reference population size :

- Accuracy of GS prediction increases
- Benefit of multi-breed GS declines

Conclusion: A first step for small breed GS

• For all scenarios tested :

- Prediction of EBV is improved by GS
- Accuracy increases with the number of animals in training population
- Multi-breed GS provides an increased accuracy and is an appealing approach for small breeds

• Encouraging results but :

- Computational time is limiting (one week for 7000 animals)
- Further developments are required

Acknowledgements

Thank you for your attention!

Chris HOZE