INTERBULL MEETING: Nantes, France, August 23 – 25, 2013

Genetic relationship between clinical mastitis and several traits of interest in Spanish Holstein dairy cattle

M.A. PÉREZ-CABAL¹ & N. CHARFEDDINE²

¹ COMPLUTENSE UNIVERSITY OF MADRID, SPAIN ² CONAFE, MADRID. SPAIN

BACKGROUND

Mastitis is one of the main health issues in dairy production:

- The losses are not only economic:
 - Animal health and welfare
 - Milk quality
 - Antibiotic usage and the image of the dairy sector
 - Are important reasons to focus on mastitis control

In Spain, clinical mastitis records are not available on large scale

BACKGROUND

ICO: SPANISH COMBINED INDEX

3% Somatic cell score MILK YIELD **PROTEIN YIELD** FAT YIELD SCS DAYS OPEN - 18% Udder composite 3%3% 8% 22% 11% ICU 5% 18%

ICO is about to be update:

index

- Mastitis will be included in the breeding goal

- New Udder health index

OBJECTIVE

Estimate genetic parameters of Clinical Mastitis Traits

Association with other important traits in Spanish Holstein population:

Somatic Cell
Production traits
Udder type Traits

Days Open
Milking Speed
Longevity

MASTITIS TRAITS DEFINITION

Clinical Mastitis (CM): Binary (0/1): At least one event during 305 days of lactation.

Number of cases of CM (NCM): Number of episodes per lactation.

Diagnosed different events were considered as different cases when: > Period between diagnosis dates >7 days > Treatment periods do not overlap

OTHER TRAITS

- LSCS: Arithmetic mean of monthly test day score during lactation
- **5 Production traits**: 305-d yields for milk, fat, fat content, protein and protein content.
- 9 Udder type traits: TEXT, FUA, RUH, RUW, CL, UD, FTP, RTP, and TL
- Days Open: Calving Interval 282 days
- Longevity: measured as days between first calving and last test-day control recorded

 Milking speed: scored in first lactation with scale of three possible scores (1: fast milking - 3 :slow milking)

DATA USED

Clinical Mastitis data provided by regional milk-recording from Basque autonomous region, Navarra, and Gerona

Data reported by Farmers or Veterinarians

Between 2004 and 2011 in 27 herds

Original data:21,396 lactations After edition: 17,666 lactations of 9,179 cows

Pedigree information, Calving dates, Production, SCC, Type, and Milking Speed traits were extracted from CONAFE data base

ANALYSIS MODELS

Model used for CM, NCM, Production traits, LSCS, and DO:

$$y_{ijklmn} = hyI_i + CM_j + LAEI_k + id_l + pe_m + \varepsilon_{ijklmn}$$

For Longevity:

$$y_{ijklm} = hy1l_i + CM_j + LAE1_k + id_l + \varepsilon_{ijklm}$$

For Milking Speed:

$$y_{ijklmn} = hy 1l_i + CM_j + LAE1_k + DIM_l + id_m + \varepsilon_{ijklmn}$$

For Type Traits:

$$y_{ijklm} = hvc_i + LS_j + LAE1_k + id_l + \varepsilon_{ijklm}$$

Multivariate REML analysis was performed with VCE 6.0

GENETIC PARAMETERS OF MASTITIS TRAITS

Slightly higher h² for NCM than CM

Genetic correlation: 0.93

Repetabilities of CM and NCM were 0.05 and 0.11, respectively

СМ	NCM
0.04 (0.005)	0.93
	0.05 (0.007)

GENETIC CORRELATION BETWEEN MASTITIS TRAITS & LSCS

	СМ		NCM	
	r _g	s.e.	r _g	s.e.
LSCS	0.85	0.08	0.76	0.07

High genetic correlation between Mastitis traits and LSCS

GENETIC CORRELATIONS BETWEEN MASTITIS & PRODUCTION

	СМ		NCM	
	r _g	s.e.	r _g	s.e.
Milk yield	0.34	0.08	0.34	0.05
Fat yield	0.10	0.04	0.12	0.04
Fat content	0.22	0.03	-0.18	0.03
Protein yield	0.32	0.06	0.26	0.05
Protein content	-0.10	0.03	-0.17	0.04

Unfavorable positive correlations were observed between yield traits and mastitis traits

GENETIC CORRELATIONS BETWEEN MASTITIS & UDDER TYPE TRAITS

	СМ		NCM	
	r _g	s.e.	r _g	s.e.
Udder Texture	-0.13	0.04	-0.20	0.03
Fore Udder Attachment	-0.10	0.04	-0.15	0.04
Rear Udder Height	0.03	0.03	0.07	0.05
Rear Udder Width	0.32	0.05	0.31	0.06
Central Ligament	-0.11	0.04	-0.06	0.04
Udder Depth	-0.34	0.03	-0.29	0.04
Fore Teat Placement	0.11	0.06	0.10	0.02
Rear Teat placement	0.18	0.07	0.10	0.02
Teat Length	-0.09	0.05	-0.03	0.02

Favorable negative correlations with : UD, FUA, TEXT, CL, and TL Unfavorable positive correlations with RUW

GENETIC CORRELATIONS BETWEEN MASTITIS & FUNCTIONAL TRAITS

	СМ		NCM	
	r _g	s.e.	r _g	s.e.
Days Open	0.34	0.09	0.40	0.10
Longevity	-0.27	0.09	-0.01	80.0
Milking Speed	-0.45	0.08	-0.32	0.07

Clinical Mastitis was associated with: ➤ More fertility problems ➤ High culling risk ➤ Faster milking speed

CONCUSIONS

CM and NCM seemed to be the same trait

- LSCS and CM traits were strongly associated, however they cannot be considered as the same trait
- Clinical mastitis was associated to high production levels, fertility problems and high culling risk
- Higher udders, with tighter fore attachment and good texture were associated with lower Clinical mastitis incidence
- Faster milking speed favors higher risk of clinical mastitis
 - Udder health index must include besides mastitis, LSCS, UD, FUA, TEXT, CL, TL, & MS

