

IT-Solutions for Animal Production

Interbull open meeting 2013, Nantes

Development of breeding values for mastitis derived from SCS results

H. Täubert, K.F. Stock, F. ReinhardtGenetic evaluation divisionVereinigte Informationssysteme Tierhaltung w.V., vit

- Udder health in Germany:
 - Breeding value on SCS
 - As relative EBV, RZS, 7% in total merit index (RZG)
 - Also important auxiliary trait of functional longevity
 - \rightarrow real total weight of SCS in RZG is higher than 7%
 - SCS is an indirect trait to consider mastitis

vit

- Use of SCS as measure for mastitis:
 - ,There is more useful information in SCS distributions than currently used in practice' (J. ten Napel, 2009)
 - Uninfected mammary gland has a low SCS
 - Mastitis influences the distribution of SCS
 - Several countries use SCS test day results for the prediction of clinical and subclinical mastitis

vit

- Use of SCS as measure for mastitis:
 - Heritabilities for mastitis are low (in general for health traits)
 - Estimates between 4% and 8% (Heringstadt, 2000 and 2008, Madsen et al., 2008, Govignon-Gion et al., Miglior et al., 2012)
 - Genetic correlations to SCS between .50 and .80 (see above)
 - Modified SCS-results are widely used to estimate mastitis → alternative traits

- Use of SCS as measure for mastitis:
 - Alternative traits:
 - Excessive values (>500.000 cells/ml)
 - Standard deviation of SCS
 - Genetic correlations were only little higher (.62-.82) to mastitis than direct measurements of SCS (Madsen et al., 2008; Miglior et al., 2012)

Data analysis

- Udder health in Germany:
 - New projects help collecting mastitis results
 - GKuh and BHNP
 - Results give ,real' mastitis events during a lactation
 - Analysis of ,real' mastitis and influence on SCC

Mastitis and SCS

Data analysis

Genetic evaluation model:

$$y_{ijklo} = h_{il} + \sum_{m=1}^{3} \beta_{jlm} f_{jlm} + \sum_{m=1}^{3} b_{klm} a_{klm} + \sum_{m=1}^{3} b_{klm} p_{klm} + e_{ijklo}$$

- Random-Regression Test-Day model
- phenotype = environmental effects + genetic effects + residual
- If single mastitis events are not covered in the genetic model
 - → residual effects contain useful information
 - What else than mastitis can it be?

Data material

Mastitis records from health trait recording:

Lactation	Mastitis event	No masitis	All
1	12017	14784	26801
2	11943	10757	22700
3	10375	6622	16997
All	32163	34335	66498

Trait definition

- STD = deviation of residuals within a lactation
 - High deviation → one or more mastitis events as residual peak within lactation
- N_RES = number of residual peaks in lactation (higher that 95% quantile)
- N_SCS = number of Cell Score peaks (higher that 95% quantile)
- RZS = relative breeding value SCS

Means for analysed traits in lactations with different numbers of mastitis events(*)

mastitis events within lactation	STD	N_SCS	N_RES	RZS
0	0.74	0.22	0.35	105.7
1	1.16	0.55	0.61	103.1
2	1.39	1.11	1.01	100.1

*) all differences are statistically significant with p=0.001

Trait definition

- R²-analysis to determine influence on target trait
- Target trait = number of mastitis events within lactation

R-Square	STD	N_SCS	RZS	N_RES
0.1537	Х			
0.2012	Х	Х		
0.2138	Х	Х	Х	
0.2145	Х	Х	Х	Х

- Combiniation of: deviation of residuals and number of cell score peaks
- STD + N_SCS

- Genetic model
 - y = hy + lact.nr. + sire + e
 - Two-trait-model:
 - STD and N_SCS
 - Sire model for better convergence
 - Genetic parameters estimated:

	STD	N_SCS
STD	0.09	0.76
N_SCS	0.22	0.04

(heritabilities on, r(g) above, r(p) below diagonal

Results

- Estimation of sire-EBVs for mastitis using alternative traits
- Validation of EBV with direct EBV from health recording
- Correlation between breeding values:

	Direct mastitis	STD	N_SCS
Direct mastitis	1	0.34	0.27
STD		1	0.72

Number of bulls with mastitis recorded daughters is very low

Results

- Mastitis recording currently available for a small fraction of cow population
- Definition of alternative traits for mastitis is useful
- Use of SCS-RRTDM evaluation gives phenotypes for <u>all cows</u> in population
- Using residuals is promising in detecting influences of mastitis not covered by SCS-evaluation
- Alternative traits have heritabilities in expected range
- Validation is difficult because of low number of bulls with reliable EBV for target trait (mastitis)

Results

More validation data is needed

If you are interested to support validation with your mastitis data, please contact me!

Acknowledgements:

health data were generously provided by the innovation projects GKuh (Gesunde Kuh) and BHNP (Breed for Health NeoPartus)

IT-Solutions for Animal Production