

Bodenkultur Wien

O Department für Nachhaltige Agrarsysteme

Evaluating maternal traits in the Austrian Murbodner cattle: Genetic parameters and inbreeding depression

Sophie Eaglen Johann Sölkner Birgit Fuerst-Waltl Christian Fuerst

Murbodner cattle

- Ancient Austrian cattle breed, dates back to 4th century BC (Celtic-Illyrian)
- Became widespread in the Eastern Alps and Alpine foothills.
- Recognized as a Styrian local breed in 1869
- After the 2nd WW, Murbodner quickly displaced by Fleckvieh

Murbodner cattle

- Last breeding organisation dissolved in 1970
- In 1982, ÖNGENE started preservation program for Murbodner breed
- Since 2003, Murbodners managed by Murbodner Breeders Association
- Current breeding goal. meat and milk production
- Currently, Murbodner
 product in Austrian st

sive local

Current Murbodner situation

- 469 registered herds, 4,025 registered cows, average herd size: 9 (ZAR)
- Breed is registered as endangered, ensuring farmer subsidies
- Compulsory mating advice program based on pedigree inbreeding coefficients of expected offspring (ÖNGENE)

Lebensnummer	Name	GebDat	Belegstier		Inzuchtgrad %
AT 667.554.617	SONNE	13.07.10	AT 644.808.147	HUGO	0,62
			AT 188.912.216	KOMET	1,04
			AT 329.343.272	BARI*04	1,38
			AT 110.196.605	MANO	1,59
			AT 488.302.117	BOSS	1,68

Both AI and natural mating bulls. Thresholds AI: 2% NM:4%

Current Murbodner situation

- Ten AI bulls per year selected based on pedigree and performance
- Semen is collected and distributed (storage is limited)
- Breeding Values have never been estimated
- Farmers are very interested in genetic selection
- Current population size shows good potential

Genetic selection in the Murbodner

- ÖNGENE project to combine restricted inbreeding with genetic selection
- Long-term objective of the project
- Objective of current study:

Evaluate the genetic parameters, inbreeding statistics and inbreeding depression of/on important traits for the Murbodner population

Traits: Calving Ease (CE), birth weight (BW) & 200-day weight

- 25,154 CE records, 16,295 weight records (2000-2013) (Zuchtdata)
- 22,497 merged records, approximately 500 herds, 450 sires
- Up to 10 parities, 20% first parity records
- Inbreeding coefficients estimated with Relax2 (Stránden and Vuori, 2002)

Inbreeding Statistics

Phenotypes

• 4 grade-scale: Easy, Normal, Difficult, Caesarean (farmer recorded)

CE	1 st parity (%)	>2 nd parity (%)	Total (%)
Easy	57	75	70
Normal	31	21	24
Difficult	11	3	5
Caesarean	1	0	0

• Weight traits: 90-280 days: 200 day weights.

	Mean (kg) ± std
Birth Weight	41 ± 5
200-day	231 ± 60

Pictures by Murbodner Association

Genetic parameter estimation, CE

- Correction for unrealistic CE scoring by farmer
- Only single births
- Animal Model (ASREML, Gilmour et al. 2006)

Fixed	Random	
Sex of calf*parity	Animal	
Age of dam*parity	Dam	
Year*month of calving	Herd*year	
Herd	Perm. Env.	

Scores transformed to mean z-values on underlying normal distribution

Genetic parameter estimation, weight

Animal Model (ASREML, Gilmour et al. 2006)

Trait	Fixed	Random
BW	Sex, parity, Age of Dam, Year of calving, herd	Animal, Dam, Herd*year, Perm. Env.
200 day	Parity, Sex*Age at recording, herd, Age at recording^2, Year*month of recording	Animal, Dam, Herd*year, Perm. Env.

• Calving Ease:

	Calving Ease - direct	Calving Ease - maternal
Calving Ease – direct	$0.17 \pm 0.04^{*}$	
Calving Ease - maternal	$-0.44 \pm 0.10^{*}$	$0.07 \pm 0.02^{*}$

* P<0.05

Genetic Trend Calving Ease

• Weight traits

	Birth weight - direct	Birth weight - maternal	
Birth weight – direct	0.49 ± 0.05*		
Birth weight - maternal	$-0.57 \pm 0.05^{*}$	$0.31 \pm 0.03^{*}$	
			-
	200 day weight - direct	200 day weight -maternal	
200 day weight - direct	0.11 ± 0.03*		
200 day weight- maternal	-0.37 ± 0.13*	$0.17 \pm 0.02^{*}$	
		* D. O.O.C	

* P<0.05

Results - Inbreeding depression

Calving Ease: Inbreeding coefficient calf and <u>dam</u> fitted as fixed effect

+ 1% dam inbreeding coefficient =+ 0.55% probability for difficult calving

Category	LS mean	P<0.05
1:	1.28	а
2:	1.32	b
3:	1.39	С
4:	1.47	c,d
5:	1.41	a,b,c,d
6:	1.25	a,b,c,d

Results - Inbreeding depression

Birth Weight: Inbreeding coefficient <u>calf</u> and dam fitted as fixed effect

- + 1% animal inbreeding coefficient =
- 70 gram birth weight

Category	LS mean	P<0.05
1:	41.97	а
2:	41.82	а
3:	41.33	b
4:	41.74	а
5:	40.67	С

Results - Inbreeding depression

200-day: Inbreeding coefficient <u>calf</u> and dam fitted as fixed effect

- + 1% animal inbreeding coefficient =
- 0.98 kg 200-day weight

Category	LS mean	P<0.05
1:	239.19	а
2:	237.13	а
3:	233.36	а
4:	224.55	b
5:	232.42	a,b

- Heritabilities are consistent with literature (Koots et al, 1994)
- Dam inbreeding depression CE consistent with McParland et al. 2008
- Dam inbreeding depression may be due to smaller dam size
- Inbreeding depression weight traits consistent with Carolina et al. 2008
- Moderate inbreeding depression weight traits confirms tendency of greater inbreeding depression effect in fitness traits

- Current worrying Murbodner calving performance
- Population suffers from inbreeding depression
- Estimation genetic parameters and EBVs feasible
- Significant inbreeding depression shows a double advantage of continuous inbreeding restriction alongside novel genetic selection

Acknowledgements

- Zuchtdata
- Rinderzucht Steiermark
- ÖNGENE
- Many very friendly Murbodner breeders (also for the pictures)

Thank you for your attention

