

Using the information collected for genetic evaluation to assess the French ruminant and equine breeds' genetic variability

C. Danchin-Burge¹, L. François¹, D. Laloë², G. Leroy² and E. Verrier²

¹ Institut de l'Elevage, France ² INRA/AgroParisTech, UMR1313 GABI, France

INTERBULL 2013

Do we *really* need genetic variability in livestock breeding?

$$\Delta G = \frac{i\rho\sigma_A}{t}$$

ΔG, genetic progress

- *i* selection intensity
- ρ accuracy of selection
- σ_A genetic variability of the given trait
- *t* generation interval

Various data sources to monitor genetic variability

Phenotypes

Pedigrees

Molecular data

The VARUME project

Aim: monitoring the within-population genetic variability of the Ruminants and Equids breeds selected in France

- Species involved: dairy and beef cattle, dairy and meat sheep, goat, horses and donkeys
- Generation of indicators of genetic variability
 - Based on Pedigree Data already available in selection database (Ruminants: CTI, INRA; Equids: SIRE, IFCE)
 - Based on already existing genotypes (produced for genomic selection)
 => feasibility study
- In order to inform the breeds managers on a regular basis of their breeds' "health"

Indicators based on pedigree data

Main principles of a pedigree analysis

- Mendelian gene transmission
- Probabilistic approach for a given locus, assuming a neutral polymorphism and without mutation
- Strong assumption: two individuals without pedigrees (= founders) are considered as unrelated

Example of demographic indicators

Evolution of the number of birth per year in the Abondance breed

Indicators based on two types of probabilities

Probability of identity

For a given animal, are two alleles identical?

Example of a Probability of Genes Indicator: Evolution of the % foreign genes in the « Pie Rouge des Plaines » breed

Example of a Probability of Identity Indicator: Evolution of inbreeding

What is the reliability of our indicators?

Quality control based on a pedigree depth analysis

For instance: a breed with an average of 2 generations known is likely to have less inbreeding than a breed with an average of 10 generations known

=> Comparison between breeds must be done for a given pedigree depth

Pedigree indicators: Pros / Cons

Pedigree and molecular data: a different kind of information

Indicators based on SNP data

Feasibility study

A new paradigm for indicators based on molecular data?

✓ Indicators with a lot of benefits

Indicators based directly on the genome Various possible studies(genetic diversity, inter breed genetic comparison, history of the breeds...)

✓ But some major problems

Genotyping costs

Sampling problems: number of markers, number of individuals

Concept: Effective population size (Ne)

- In a breed, all the animals don't breed and among the reproducing animals, the progeny sizes vary greatly
- Ne is equal to the number of individuals needed, in a panmixia situation, that would have an equivalent genetic variability than the breed under analysis.
- Three different methods used in our study based on dairy sheep genotypes:
 - Linkage Desequilibrium Ne LD (SNP data)
 - 2. Inbreeding Ne F (Pedigree data)
 - 3. Kinship Ne K (Pedigree data)

Effects of sample size on Ne

Problem: presence of substructure in 2 breeds

Lacaune

Manech Tête Rousse

Account for substructure (1)

 r^2 = allelic correlation

$$r^2 >> \rightarrow Ne <<$$

idele.fr

Marker 1

Account for substructure

Ne results for four dairy sheep breeds (across 4 generations)

Breed	<i>Ne</i> (LD)	<i>Ne</i> (LD struct.)	Ne (F)	Ne (Φ)
	195	303	223	312
	118	145	153	148
	98	/	108	91
8	92	/	82	82

In the end, what could be accomplished by 2015?

- Regular monitoring of the genetic variability of all ruminant and Equids breeds thanks to an Observatory based on pedigree data:
 - ✓ All indicators are freely available, by breed, through a web site (? Equids ??)
 - ✓ All indicators are regularly updated
- Setting up of an Observatory based on genotypes for the breeds using genomic selection
 - ... if it is feasible and there is true add up value / Pedigrees

Acknowledgement:

Funding:

Genotypages provided by:

APIS-GENE, INRA, VALOGENE, Roquefort'in and GENOMIA

Thank you for your attention

idele.fr

